// Copyright 2019 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "go_asm.h" #include "textflag.h" // condition code masks #define EQ 8 #define NE 7 // register assignments #define R_ZERO R0 #define R_VAL R1 #define R_TMP R2 #define R_PTR R3 #define R_LEN R4 #define R_CHAR R5 #define R_RET R6 #define R_ITER R7 #define R_CNT R8 #define R_MPTR R9 // vector register assignments #define V_ZERO V0 #define V_CHAR V1 #define V_MASK V2 #define V_VAL V3 #define V_CNT V4 // mask for trailing bytes in vector implementation GLOBL countbytemask<>(SB), RODATA, $16 DATA countbytemask<>+0(SB)/8, $0x0101010101010101 DATA countbytemask<>+8(SB)/8, $0x0101010101010101 // func Count(b []byte, c byte) int TEXT ·Count(SB), NOSPLIT|NOFRAME, $0-40 LMG b+0(FP), R_PTR, R_LEN MOVBZ c+24(FP), R_CHAR MOVD $ret+32(FP), R_RET BR countbytebody<>(SB) // func CountString(s string, c byte) int TEXT ·CountString(SB), NOSPLIT|NOFRAME, $0-32 LMG s+0(FP), R_PTR, R_LEN MOVBZ c+16(FP), R_CHAR MOVD $ret+24(FP), R_RET BR countbytebody<>(SB) // input: // R_PTR = address of array of bytes // R_LEN = number of bytes in array // R_CHAR = byte value to count zero (extended to register width) // R_RET = address of return value TEXT countbytebody<>(SB), NOSPLIT|NOFRAME, $0-0 MOVD $internal∕cpu·S390X+const_offsetS390xHasVX(SB), R_TMP MOVD $countbytemask<>(SB), R_MPTR CGIJ $EQ, R_LEN, $0, ret0 // return if length is 0. SRD $4, R_LEN, R_ITER // R_ITER is the number of 16-byte chunks MOVBZ (R_TMP), R_TMP // load bool indicating support for vector facility CGIJ $EQ, R_TMP, $0, novx // jump to scalar code if the vector facility is not available // Start of vector code (have vector facility). // // Set R_LEN to be the length mod 16 minus 1 to use as an index for // vector 'load with length' (VLL). It will be in the range [-1,14]. // Also replicate c across a 16-byte vector and initialize V_ZERO. ANDW $0xf, R_LEN VLVGB $0, R_CHAR, V_CHAR // V_CHAR = [16]byte{c, 0, ..., 0, 0} VZERO V_ZERO // V_ZERO = [1]uint128{0} ADDW $-1, R_LEN VREPB $0, V_CHAR, V_CHAR // V_CHAR = [16]byte{c, c, ..., c, c} // Jump to loop if we have more than 15 bytes to process. CGIJ $NE, R_ITER, $0, vxchunks // Load 1-15 bytes and corresponding mask. // Note: only the low 32-bits of R_LEN are used for the index. VLL R_LEN, (R_PTR), V_VAL VLL R_LEN, (R_MPTR), V_MASK // Compare each byte in input chunk against byte to be counted. // Each byte element will be set to either 0 (no match) or 1 (match). VCEQB V_CHAR, V_VAL, V_VAL // each byte will be either 0xff or 0x00 VN V_MASK, V_VAL, V_VAL // mask out most significant 7 bits // Accumulate matched byte count in 128-bit integer value. VSUMB V_VAL, V_ZERO, V_VAL // [16]byte{x0, x1, ..., x14, x15} → [4]uint32{x0+x1+x2+x3, ..., x12+x13+x14+x15} VSUMQF V_VAL, V_ZERO, V_CNT // [4]uint32{x0, x1, x2, x3} → [1]uint128{x0+x1+x2+x3} // Return rightmost (lowest) 64-bit part of accumulator. VSTEG $1, V_CNT, (R_RET) RET vxchunks: // Load 0x01 into every byte element in the 16-byte mask vector. VREPIB $1, V_MASK // V_MASK = [16]byte{1, 1, ..., 1, 1} VZERO V_CNT // initial uint128 count of 0 vxloop: // Load input bytes in 16-byte chunks. VL (R_PTR), V_VAL // Compare each byte in input chunk against byte to be counted. // Each byte element will be set to either 0 (no match) or 1 (match). VCEQB V_CHAR, V_VAL, V_VAL // each byte will be either 0xff or 0x00 VN V_MASK, V_VAL, V_VAL // mask out most significant 7 bits // Increment input string address. MOVD $16(R_PTR), R_PTR // Accumulate matched byte count in 128-bit integer value. VSUMB V_VAL, V_ZERO, V_VAL // [16]byte{x0, x1, ..., x14, x15} → [4]uint32{x0+x1+x2+x3, ..., x12+x13+x14+x15} VSUMQF V_VAL, V_ZERO, V_VAL // [4]uint32{x0, x1, x2, x3} → [1]uint128{x0+x1+x2+x3} VAQ V_VAL, V_CNT, V_CNT // accumulate // Repeat until all 16-byte chunks are done. BRCTG R_ITER, vxloop // Skip to end if there are no trailing bytes. CIJ $EQ, R_LEN, $-1, vxret // Load 1-15 bytes and corresponding mask. // Note: only the low 32-bits of R_LEN are used for the index. VLL R_LEN, (R_PTR), V_VAL VLL R_LEN, (R_MPTR), V_MASK // Compare each byte in input chunk against byte to be counted. // Each byte element will be set to either 0 (no match) or 1 (match). VCEQB V_CHAR, V_VAL, V_VAL VN V_MASK, V_VAL, V_VAL // Accumulate matched byte count in 128-bit integer value. VSUMB V_VAL, V_ZERO, V_VAL // [16]byte{x0, x1, ..., x14, x15} → [4]uint32{x0+x1+x2+x3, ..., x12+x13+x14+x15} VSUMQF V_VAL, V_ZERO, V_VAL // [4]uint32{x0, x1, x2, x3} → [1]uint128{x0+x1+x2+x3} VAQ V_VAL, V_CNT, V_CNT // accumulate vxret: // Return rightmost (lowest) 64-bit part of accumulator. VSTEG $1, V_CNT, (R_RET) RET novx: // Start of non-vector code (the vector facility not available). // // Initialise counter and constant zero. MOVD $0, R_CNT MOVD $0, R_ZERO loop: // Read 1-byte from input and compare. // Note: avoid putting LOCGR in critical path. MOVBZ (R_PTR), R_VAL MOVD $1, R_TMP MOVD $1(R_PTR), R_PTR CMPW R_VAL, R_CHAR LOCGR $NE, R_ZERO, R_TMP // select 0 if no match (1 if there is a match) ADD R_TMP, R_CNT // accumulate 64-bit result // Repeat until all bytes have been checked. BRCTG R_LEN, loop ret: MOVD R_CNT, (R_RET) RET ret0: MOVD $0, (R_RET) RET