// Copyright 2019 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package linalg // Numeric is type bound that matches any numeric type. // It would likely be in a constraints package in the standard library. type Numeric interface { ~int | ~int8 | ~int16 | ~int32 | ~int64 | ~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr | ~float32 | ~float64 | ~complex64 | ~complex128 } func DotProduct[T Numeric](s1, s2 []T) T { if len(s1) != len(s2) { panic("DotProduct: slices of unequal length") } var r T for i := range s1 { r += s1[i] * s2[i] } return r } // NumericAbs matches numeric types with an Abs method. type NumericAbs[T any] interface { Numeric Abs() T } // AbsDifference computes the absolute value of the difference of // a and b, where the absolute value is determined by the Abs method. func AbsDifference[T NumericAbs[T]](a, b T) T { d := a - b return d.Abs() } // OrderedNumeric is a type bound that matches numeric types that support the < operator. type OrderedNumeric interface { ~int | ~int8 | ~int16 | ~int32 | ~int64 | ~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr | ~float32 | ~float64 } // Complex is a type bound that matches the two complex types, which do not have a < operator. type Complex interface { ~complex64 | ~complex128 } // For now, a lone type parameter is not permitted as RHS in a type declaration (issue #45639). // // OrderedAbs is a helper type that defines an Abs method for // // ordered numeric types. // type OrderedAbs[T OrderedNumeric] T // // func (a OrderedAbs[T]) Abs() OrderedAbs[T] { // if a < 0 { // return -a // } // return a // } // // // ComplexAbs is a helper type that defines an Abs method for // // complex types. // type ComplexAbs[T Complex] T // // func (a ComplexAbs[T]) Abs() ComplexAbs[T] { // r := float64(real(a)) // i := float64(imag(a)) // d := math.Sqrt(r * r + i * i) // return ComplexAbs[T](complex(d, 0)) // } // // func OrderedAbsDifference[T OrderedNumeric](a, b T) T { // return T(AbsDifference(OrderedAbs[T](a), OrderedAbs[T](b))) // } // // func ComplexAbsDifference[T Complex](a, b T) T { // return T(AbsDifference(ComplexAbs[T](a), ComplexAbs[T](b))) // }