// Copyright 2013 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. //go:build !math_big_pure_go #include "textflag.h" // This file provides fast assembly versions for the elementary // arithmetic operations on vectors implemented in arith.go. // TODO: Consider re-implementing using Advanced SIMD // once the assembler supports those instructions. // func addVV(z, x, y []Word) (c Word) TEXT ·addVV(SB),NOSPLIT,$0 MOVD z_len+8(FP), R0 MOVD x+24(FP), R8 MOVD y+48(FP), R9 MOVD z+0(FP), R10 ADDS $0, R0 // clear carry flag TBZ $0, R0, two MOVD.P 8(R8), R11 MOVD.P 8(R9), R15 ADCS R15, R11 MOVD.P R11, 8(R10) SUB $1, R0 two: TBZ $1, R0, loop LDP.P 16(R8), (R11, R12) LDP.P 16(R9), (R15, R16) ADCS R15, R11 ADCS R16, R12 STP.P (R11, R12), 16(R10) SUB $2, R0 loop: CBZ R0, done // careful not to touch the carry flag LDP.P 32(R8), (R11, R12) LDP -16(R8), (R13, R14) LDP.P 32(R9), (R15, R16) LDP -16(R9), (R17, R19) ADCS R15, R11 ADCS R16, R12 ADCS R17, R13 ADCS R19, R14 STP.P (R11, R12), 32(R10) STP (R13, R14), -16(R10) SUB $4, R0 B loop done: CSET HS, R0 // extract carry flag MOVD R0, c+72(FP) RET // func subVV(z, x, y []Word) (c Word) TEXT ·subVV(SB),NOSPLIT,$0 MOVD z_len+8(FP), R0 MOVD x+24(FP), R8 MOVD y+48(FP), R9 MOVD z+0(FP), R10 CMP R0, R0 // set carry flag TBZ $0, R0, two MOVD.P 8(R8), R11 MOVD.P 8(R9), R15 SBCS R15, R11 MOVD.P R11, 8(R10) SUB $1, R0 two: TBZ $1, R0, loop LDP.P 16(R8), (R11, R12) LDP.P 16(R9), (R15, R16) SBCS R15, R11 SBCS R16, R12 STP.P (R11, R12), 16(R10) SUB $2, R0 loop: CBZ R0, done // careful not to touch the carry flag LDP.P 32(R8), (R11, R12) LDP -16(R8), (R13, R14) LDP.P 32(R9), (R15, R16) LDP -16(R9), (R17, R19) SBCS R15, R11 SBCS R16, R12 SBCS R17, R13 SBCS R19, R14 STP.P (R11, R12), 32(R10) STP (R13, R14), -16(R10) SUB $4, R0 B loop done: CSET LO, R0 // extract carry flag MOVD R0, c+72(FP) RET #define vwOneOp(instr, op1) \ MOVD.P 8(R1), R4; \ instr op1, R4; \ MOVD.P R4, 8(R3); // handle the first 1~4 elements before starting iteration in addVW/subVW #define vwPreIter(instr1, instr2, counter, target) \ vwOneOp(instr1, R2); \ SUB $1, counter; \ CBZ counter, target; \ vwOneOp(instr2, $0); \ SUB $1, counter; \ CBZ counter, target; \ vwOneOp(instr2, $0); \ SUB $1, counter; \ CBZ counter, target; \ vwOneOp(instr2, $0); // do one iteration of add or sub in addVW/subVW #define vwOneIter(instr, counter, exit) \ CBZ counter, exit; \ // careful not to touch the carry flag LDP.P 32(R1), (R4, R5); \ LDP -16(R1), (R6, R7); \ instr $0, R4, R8; \ instr $0, R5, R9; \ instr $0, R6, R10; \ instr $0, R7, R11; \ STP.P (R8, R9), 32(R3); \ STP (R10, R11), -16(R3); \ SUB $4, counter; // do one iteration of copy in addVW/subVW #define vwOneIterCopy(counter, exit) \ CBZ counter, exit; \ LDP.P 32(R1), (R4, R5); \ LDP -16(R1), (R6, R7); \ STP.P (R4, R5), 32(R3); \ STP (R6, R7), -16(R3); \ SUB $4, counter; // func addVW(z, x []Word, y Word) (c Word) // The 'large' branch handles large 'z'. It checks the carry flag on every iteration // and switches to copy if we are done with carries. The copying is skipped as well // if 'x' and 'z' happen to share the same underlying storage. // The overhead of the checking and branching is visible when 'z' are small (~5%), // so set a threshold of 32, and remain the small-sized part entirely untouched. TEXT ·addVW(SB),NOSPLIT,$0 MOVD z+0(FP), R3 MOVD z_len+8(FP), R0 MOVD x+24(FP), R1 MOVD y+48(FP), R2 CMP $32, R0 BGE large // large-sized 'z' and 'x' CBZ R0, len0 // the length of z is 0 MOVD.P 8(R1), R4 ADDS R2, R4 // z[0] = x[0] + y, set carry MOVD.P R4, 8(R3) SUB $1, R0 CBZ R0, len1 // the length of z is 1 TBZ $0, R0, two MOVD.P 8(R1), R4 // do it once ADCS $0, R4 MOVD.P R4, 8(R3) SUB $1, R0 two: // do it twice TBZ $1, R0, loop LDP.P 16(R1), (R4, R5) ADCS $0, R4, R8 // c, z[i] = x[i] + c ADCS $0, R5, R9 STP.P (R8, R9), 16(R3) SUB $2, R0 loop: // do four times per round vwOneIter(ADCS, R0, len1) B loop len1: CSET HS, R2 // extract carry flag len0: MOVD R2, c+56(FP) done: RET large: AND $0x3, R0, R10 AND $~0x3, R0 // unrolling for the first 1~4 elements to avoid saving the carry // flag in each step, adjust $R0 if we unrolled 4 elements vwPreIter(ADDS, ADCS, R10, add4) SUB $4, R0 add4: BCC copy vwOneIter(ADCS, R0, len1) B add4 copy: MOVD ZR, c+56(FP) CMP R1, R3 BEQ done copy_4: // no carry flag, copy the rest vwOneIterCopy(R0, done) B copy_4 // func subVW(z, x []Word, y Word) (c Word) // The 'large' branch handles large 'z'. It checks the carry flag on every iteration // and switches to copy if we are done with carries. The copying is skipped as well // if 'x' and 'z' happen to share the same underlying storage. // The overhead of the checking and branching is visible when 'z' are small (~5%), // so set a threshold of 32, and remain the small-sized part entirely untouched. TEXT ·subVW(SB),NOSPLIT,$0 MOVD z+0(FP), R3 MOVD z_len+8(FP), R0 MOVD x+24(FP), R1 MOVD y+48(FP), R2 CMP $32, R0 BGE large // large-sized 'z' and 'x' CBZ R0, len0 // the length of z is 0 MOVD.P 8(R1), R4 SUBS R2, R4 // z[0] = x[0] - y, set carry MOVD.P R4, 8(R3) SUB $1, R0 CBZ R0, len1 // the length of z is 1 TBZ $0, R0, two // do it once MOVD.P 8(R1), R4 SBCS $0, R4 MOVD.P R4, 8(R3) SUB $1, R0 two: // do it twice TBZ $1, R0, loop LDP.P 16(R1), (R4, R5) SBCS $0, R4, R8 // c, z[i] = x[i] + c SBCS $0, R5, R9 STP.P (R8, R9), 16(R3) SUB $2, R0 loop: // do four times per round vwOneIter(SBCS, R0, len1) B loop len1: CSET LO, R2 // extract carry flag len0: MOVD R2, c+56(FP) done: RET large: AND $0x3, R0, R10 AND $~0x3, R0 // unrolling for the first 1~4 elements to avoid saving the carry // flag in each step, adjust $R0 if we unrolled 4 elements vwPreIter(SUBS, SBCS, R10, sub4) SUB $4, R0 sub4: BCS copy vwOneIter(SBCS, R0, len1) B sub4 copy: MOVD ZR, c+56(FP) CMP R1, R3 BEQ done copy_4: // no carry flag, copy the rest vwOneIterCopy(R0, done) B copy_4 // func shlVU(z, x []Word, s uint) (c Word) // This implementation handles the shift operation from the high word to the low word, // which may be an error for the case where the low word of x overlaps with the high // word of z. When calling this function directly, you need to pay attention to this // situation. TEXT ·shlVU(SB),NOSPLIT,$0 LDP z+0(FP), (R0, R1) // R0 = z.ptr, R1 = len(z) MOVD x+24(FP), R2 MOVD s+48(FP), R3 ADD R1<<3, R0 // R0 = &z[n] ADD R1<<3, R2 // R2 = &x[n] CBZ R1, len0 CBZ R3, copy // if the number of shift is 0, just copy x to z MOVD $64, R4 SUB R3, R4 // handling the most significant element x[n-1] MOVD.W -8(R2), R6 LSR R4, R6, R5 // return value LSL R3, R6, R8 // x[i] << s SUB $1, R1 one: TBZ $0, R1, two MOVD.W -8(R2), R6 LSR R4, R6, R7 ORR R8, R7 LSL R3, R6, R8 SUB $1, R1 MOVD.W R7, -8(R0) two: TBZ $1, R1, loop LDP.W -16(R2), (R6, R7) LSR R4, R7, R10 ORR R8, R10 LSL R3, R7 LSR R4, R6, R9 ORR R7, R9 LSL R3, R6, R8 SUB $2, R1 STP.W (R9, R10), -16(R0) loop: CBZ R1, done LDP.W -32(R2), (R10, R11) LDP 16(R2), (R12, R13) LSR R4, R13, R23 ORR R8, R23 // z[i] = (x[i] << s) | (x[i-1] >> (64 - s)) LSL R3, R13 LSR R4, R12, R22 ORR R13, R22 LSL R3, R12 LSR R4, R11, R21 ORR R12, R21 LSL R3, R11 LSR R4, R10, R20 ORR R11, R20 LSL R3, R10, R8 STP.W (R20, R21), -32(R0) STP (R22, R23), 16(R0) SUB $4, R1 B loop done: MOVD.W R8, -8(R0) // the first element x[0] MOVD R5, c+56(FP) // the part moved out from x[n-1] RET copy: CMP R0, R2 BEQ len0 TBZ $0, R1, ctwo MOVD.W -8(R2), R4 MOVD.W R4, -8(R0) SUB $1, R1 ctwo: TBZ $1, R1, cloop LDP.W -16(R2), (R4, R5) STP.W (R4, R5), -16(R0) SUB $2, R1 cloop: CBZ R1, len0 LDP.W -32(R2), (R4, R5) LDP 16(R2), (R6, R7) STP.W (R4, R5), -32(R0) STP (R6, R7), 16(R0) SUB $4, R1 B cloop len0: MOVD $0, c+56(FP) RET // func shrVU(z, x []Word, s uint) (c Word) // This implementation handles the shift operation from the low word to the high word, // which may be an error for the case where the high word of x overlaps with the low // word of z. When calling this function directly, you need to pay attention to this // situation. TEXT ·shrVU(SB),NOSPLIT,$0 MOVD z+0(FP), R0 MOVD z_len+8(FP), R1 MOVD x+24(FP), R2 MOVD s+48(FP), R3 MOVD $0, R8 MOVD $64, R4 SUB R3, R4 CBZ R1, len0 CBZ R3, copy // if the number of shift is 0, just copy x to z MOVD.P 8(R2), R20 LSR R3, R20, R8 LSL R4, R20 MOVD R20, c+56(FP) // deal with the first element SUB $1, R1 TBZ $0, R1, two MOVD.P 8(R2), R6 LSL R4, R6, R20 ORR R8, R20 LSR R3, R6, R8 MOVD.P R20, 8(R0) SUB $1, R1 two: TBZ $1, R1, loop LDP.P 16(R2), (R6, R7) LSL R4, R6, R20 LSR R3, R6 ORR R8, R20 LSL R4, R7, R21 LSR R3, R7, R8 ORR R6, R21 STP.P (R20, R21), 16(R0) SUB $2, R1 loop: CBZ R1, done LDP.P 32(R2), (R10, R11) LDP -16(R2), (R12, R13) LSL R4, R10, R20 LSR R3, R10 ORR R8, R20 // z[i] = (x[i] >> s) | (x[i+1] << (64 - s)) LSL R4, R11, R21 LSR R3, R11 ORR R10, R21 LSL R4, R12, R22 LSR R3, R12 ORR R11, R22 LSL R4, R13, R23 LSR R3, R13, R8 ORR R12, R23 STP.P (R20, R21), 32(R0) STP (R22, R23), -16(R0) SUB $4, R1 B loop done: MOVD R8, (R0) // deal with the last element RET copy: CMP R0, R2 BEQ len0 TBZ $0, R1, ctwo MOVD.P 8(R2), R3 MOVD.P R3, 8(R0) SUB $1, R1 ctwo: TBZ $1, R1, cloop LDP.P 16(R2), (R4, R5) STP.P (R4, R5), 16(R0) SUB $2, R1 cloop: CBZ R1, len0 LDP.P 32(R2), (R4, R5) LDP -16(R2), (R6, R7) STP.P (R4, R5), 32(R0) STP (R6, R7), -16(R0) SUB $4, R1 B cloop len0: MOVD $0, c+56(FP) RET // func mulAddVWW(z, x []Word, y, r Word) (c Word) TEXT ·mulAddVWW(SB),NOSPLIT,$0 MOVD z+0(FP), R1 MOVD z_len+8(FP), R0 MOVD x+24(FP), R2 MOVD y+48(FP), R3 MOVD r+56(FP), R4 // c, z = x * y + r TBZ $0, R0, two MOVD.P 8(R2), R5 MUL R3, R5, R7 UMULH R3, R5, R8 ADDS R4, R7 ADC $0, R8, R4 // c, z[i] = x[i] * y + r MOVD.P R7, 8(R1) SUB $1, R0 two: TBZ $1, R0, loop LDP.P 16(R2), (R5, R6) MUL R3, R5, R10 UMULH R3, R5, R11 ADDS R4, R10 MUL R3, R6, R12 UMULH R3, R6, R13 ADCS R12, R11 ADC $0, R13, R4 STP.P (R10, R11), 16(R1) SUB $2, R0 loop: CBZ R0, done LDP.P 32(R2), (R5, R6) LDP -16(R2), (R7, R8) MUL R3, R5, R10 UMULH R3, R5, R11 ADDS R4, R10 MUL R3, R6, R12 UMULH R3, R6, R13 ADCS R11, R12 MUL R3, R7, R14 UMULH R3, R7, R15 ADCS R13, R14 MUL R3, R8, R16 UMULH R3, R8, R17 ADCS R15, R16 ADC $0, R17, R4 STP.P (R10, R12), 32(R1) STP (R14, R16), -16(R1) SUB $4, R0 B loop done: MOVD R4, c+64(FP) RET // func addMulVVW(z, x []Word, y Word) (c Word) TEXT ·addMulVVW(SB),NOSPLIT,$0 MOVD z+0(FP), R1 MOVD z_len+8(FP), R0 MOVD x+24(FP), R2 MOVD y+48(FP), R3 MOVD $0, R4 TBZ $0, R0, two MOVD.P 8(R2), R5 MOVD (R1), R6 MUL R5, R3, R7 UMULH R5, R3, R8 ADDS R7, R6 ADC $0, R8, R4 MOVD.P R6, 8(R1) SUB $1, R0 two: TBZ $1, R0, loop LDP.P 16(R2), (R5, R10) LDP (R1), (R6, R11) MUL R10, R3, R13 UMULH R10, R3, R12 MUL R5, R3, R7 UMULH R5, R3, R8 ADDS R4, R6 ADCS R13, R11 ADC $0, R12 ADDS R7, R6 ADCS R8, R11 ADC $0, R12, R4 STP.P (R6, R11), 16(R1) SUB $2, R0 // The main loop of this code operates on a block of 4 words every iteration // performing [R4:R12:R11:R10:R9] = R4 + R3 * [R8:R7:R6:R5] + [R12:R11:R10:R9] // where R4 is carried from the previous iteration, R8:R7:R6:R5 hold the next // 4 words of x, R3 is y and R12:R11:R10:R9 are part of the result z. loop: CBZ R0, done LDP.P 16(R2), (R5, R6) LDP.P 16(R2), (R7, R8) LDP (R1), (R9, R10) ADDS R4, R9 MUL R6, R3, R14 ADCS R14, R10 MUL R7, R3, R15 LDP 16(R1), (R11, R12) ADCS R15, R11 MUL R8, R3, R16 ADCS R16, R12 UMULH R8, R3, R20 ADC $0, R20 MUL R5, R3, R13 ADDS R13, R9 UMULH R5, R3, R17 ADCS R17, R10 UMULH R6, R3, R21 STP.P (R9, R10), 16(R1) ADCS R21, R11 UMULH R7, R3, R19 ADCS R19, R12 STP.P (R11, R12), 16(R1) ADC $0, R20, R4 SUB $4, R0 B loop done: MOVD R4, c+56(FP) RET