// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package reflect_test import ( "bytes" "encoding/base64" "flag" "fmt" "go/token" "internal/abi" "internal/goarch" "internal/testenv" "io" "math" "math/rand" "net" "os" . "reflect" "reflect/internal/example1" "reflect/internal/example2" "runtime" "sort" "strconv" "strings" "sync" "sync/atomic" "testing" "time" "unsafe" ) const bucketCount = abi.MapBucketCount var sink any func TestBool(t *testing.T) { v := ValueOf(true) if v.Bool() != true { t.Fatal("ValueOf(true).Bool() = false") } } type integer int type T struct { a int b float64 c string d *int } var _ = T{} == T{} // tests depend on T being comparable type pair struct { i any s string } func assert(t *testing.T, s, want string) { if s != want { t.Errorf("have %#q want %#q", s, want) } } var typeTests = []pair{ {struct{ x int }{}, "int"}, {struct{ x int8 }{}, "int8"}, {struct{ x int16 }{}, "int16"}, {struct{ x int32 }{}, "int32"}, {struct{ x int64 }{}, "int64"}, {struct{ x uint }{}, "uint"}, {struct{ x uint8 }{}, "uint8"}, {struct{ x uint16 }{}, "uint16"}, {struct{ x uint32 }{}, "uint32"}, {struct{ x uint64 }{}, "uint64"}, {struct{ x float32 }{}, "float32"}, {struct{ x float64 }{}, "float64"}, {struct{ x int8 }{}, "int8"}, {struct{ x (**int8) }{}, "**int8"}, {struct{ x (**integer) }{}, "**reflect_test.integer"}, {struct{ x ([32]int32) }{}, "[32]int32"}, {struct{ x ([]int8) }{}, "[]int8"}, {struct{ x (map[string]int32) }{}, "map[string]int32"}, {struct{ x (chan<- string) }{}, "chan<- string"}, {struct{ x (chan<- chan string) }{}, "chan<- chan string"}, {struct{ x (chan<- <-chan string) }{}, "chan<- <-chan string"}, {struct{ x (<-chan <-chan string) }{}, "<-chan <-chan string"}, {struct{ x (chan (<-chan string)) }{}, "chan (<-chan string)"}, {struct { x struct { c chan *int32 d float32 } }{}, "struct { c chan *int32; d float32 }", }, {struct{ x (func(a int8, b int32)) }{}, "func(int8, int32)"}, {struct { x struct { c func(chan *integer, *int8) } }{}, "struct { c func(chan *reflect_test.integer, *int8) }", }, {struct { x struct { a int8 b int32 } }{}, "struct { a int8; b int32 }", }, {struct { x struct { a int8 b int8 c int32 } }{}, "struct { a int8; b int8; c int32 }", }, {struct { x struct { a int8 b int8 c int8 d int32 } }{}, "struct { a int8; b int8; c int8; d int32 }", }, {struct { x struct { a int8 b int8 c int8 d int8 e int32 } }{}, "struct { a int8; b int8; c int8; d int8; e int32 }", }, {struct { x struct { a int8 b int8 c int8 d int8 e int8 f int32 } }{}, "struct { a int8; b int8; c int8; d int8; e int8; f int32 }", }, {struct { x struct { a int8 `reflect:"hi there"` } }{}, `struct { a int8 "reflect:\"hi there\"" }`, }, {struct { x struct { a int8 `reflect:"hi \x00there\t\n\"\\"` } }{}, `struct { a int8 "reflect:\"hi \\x00there\\t\\n\\\"\\\\\"" }`, }, {struct { x struct { f func(args ...int) } }{}, "struct { f func(...int) }", }, {struct { x (interface { a(func(func(int) int) func(func(int)) int) b() }) }{}, "interface { reflect_test.a(func(func(int) int) func(func(int)) int); reflect_test.b() }", }, {struct { x struct { int32 int64 } }{}, "struct { int32; int64 }", }, } var valueTests = []pair{ {new(int), "132"}, {new(int8), "8"}, {new(int16), "16"}, {new(int32), "32"}, {new(int64), "64"}, {new(uint), "132"}, {new(uint8), "8"}, {new(uint16), "16"}, {new(uint32), "32"}, {new(uint64), "64"}, {new(float32), "256.25"}, {new(float64), "512.125"}, {new(complex64), "532.125+10i"}, {new(complex128), "564.25+1i"}, {new(string), "stringy cheese"}, {new(bool), "true"}, {new(*int8), "*int8(0)"}, {new(**int8), "**int8(0)"}, {new([5]int32), "[5]int32{0, 0, 0, 0, 0}"}, {new(**integer), "**reflect_test.integer(0)"}, {new(map[string]int32), "map[string]int32{}"}, {new(chan<- string), "chan<- string"}, {new(func(a int8, b int32)), "func(int8, int32)(0)"}, {new(struct { c chan *int32 d float32 }), "struct { c chan *int32; d float32 }{chan *int32, 0}", }, {new(struct{ c func(chan *integer, *int8) }), "struct { c func(chan *reflect_test.integer, *int8) }{func(chan *reflect_test.integer, *int8)(0)}", }, {new(struct { a int8 b int32 }), "struct { a int8; b int32 }{0, 0}", }, {new(struct { a int8 b int8 c int32 }), "struct { a int8; b int8; c int32 }{0, 0, 0}", }, } func testType(t *testing.T, i int, typ Type, want string) { s := typ.String() if s != want { t.Errorf("#%d: have %#q, want %#q", i, s, want) } } func TestTypes(t *testing.T) { for i, tt := range typeTests { testType(t, i, ValueOf(tt.i).Field(0).Type(), tt.s) } } func TestSet(t *testing.T) { for i, tt := range valueTests { v := ValueOf(tt.i) v = v.Elem() switch v.Kind() { case Int: v.SetInt(132) case Int8: v.SetInt(8) case Int16: v.SetInt(16) case Int32: v.SetInt(32) case Int64: v.SetInt(64) case Uint: v.SetUint(132) case Uint8: v.SetUint(8) case Uint16: v.SetUint(16) case Uint32: v.SetUint(32) case Uint64: v.SetUint(64) case Float32: v.SetFloat(256.25) case Float64: v.SetFloat(512.125) case Complex64: v.SetComplex(532.125 + 10i) case Complex128: v.SetComplex(564.25 + 1i) case String: v.SetString("stringy cheese") case Bool: v.SetBool(true) } s := valueToString(v) if s != tt.s { t.Errorf("#%d: have %#q, want %#q", i, s, tt.s) } } } func TestSetValue(t *testing.T) { for i, tt := range valueTests { v := ValueOf(tt.i).Elem() switch v.Kind() { case Int: v.Set(ValueOf(int(132))) case Int8: v.Set(ValueOf(int8(8))) case Int16: v.Set(ValueOf(int16(16))) case Int32: v.Set(ValueOf(int32(32))) case Int64: v.Set(ValueOf(int64(64))) case Uint: v.Set(ValueOf(uint(132))) case Uint8: v.Set(ValueOf(uint8(8))) case Uint16: v.Set(ValueOf(uint16(16))) case Uint32: v.Set(ValueOf(uint32(32))) case Uint64: v.Set(ValueOf(uint64(64))) case Float32: v.Set(ValueOf(float32(256.25))) case Float64: v.Set(ValueOf(512.125)) case Complex64: v.Set(ValueOf(complex64(532.125 + 10i))) case Complex128: v.Set(ValueOf(complex128(564.25 + 1i))) case String: v.Set(ValueOf("stringy cheese")) case Bool: v.Set(ValueOf(true)) } s := valueToString(v) if s != tt.s { t.Errorf("#%d: have %#q, want %#q", i, s, tt.s) } } } func TestMapIterSet(t *testing.T) { m := make(map[string]any, len(valueTests)) for _, tt := range valueTests { m[tt.s] = tt.i } v := ValueOf(m) k := New(v.Type().Key()).Elem() e := New(v.Type().Elem()).Elem() iter := v.MapRange() for iter.Next() { k.SetIterKey(iter) e.SetIterValue(iter) want := m[k.String()] got := e.Interface() if got != want { t.Errorf("%q: want (%T) %v, got (%T) %v", k.String(), want, want, got, got) } if setkey, key := valueToString(k), valueToString(iter.Key()); setkey != key { t.Errorf("MapIter.Key() = %q, MapIter.SetKey() = %q", key, setkey) } if setval, val := valueToString(e), valueToString(iter.Value()); setval != val { t.Errorf("MapIter.Value() = %q, MapIter.SetValue() = %q", val, setval) } } if testenv.OptimizationOff() { return // no inlining with the noopt builder } got := int(testing.AllocsPerRun(10, func() { iter := v.MapRange() for iter.Next() { k.SetIterKey(iter) e.SetIterValue(iter) } })) // Calling MapRange should not allocate even though it returns a *MapIter. // The function is inlineable, so if the local usage does not escape // the *MapIter, it can remain stack allocated. want := 0 if got != want { t.Errorf("wanted %d alloc, got %d", want, got) } } func TestCanIntUintFloatComplex(t *testing.T) { type integer int type uinteger uint type float float64 type complex complex128 var ops = [...]string{"CanInt", "CanUint", "CanFloat", "CanComplex"} var testCases = []struct { i any want [4]bool }{ // signed integer {132, [...]bool{true, false, false, false}}, {int8(8), [...]bool{true, false, false, false}}, {int16(16), [...]bool{true, false, false, false}}, {int32(32), [...]bool{true, false, false, false}}, {int64(64), [...]bool{true, false, false, false}}, // unsigned integer {uint(132), [...]bool{false, true, false, false}}, {uint8(8), [...]bool{false, true, false, false}}, {uint16(16), [...]bool{false, true, false, false}}, {uint32(32), [...]bool{false, true, false, false}}, {uint64(64), [...]bool{false, true, false, false}}, {uintptr(0xABCD), [...]bool{false, true, false, false}}, // floating-point {float32(256.25), [...]bool{false, false, true, false}}, {float64(512.125), [...]bool{false, false, true, false}}, // complex {complex64(532.125 + 10i), [...]bool{false, false, false, true}}, {complex128(564.25 + 1i), [...]bool{false, false, false, true}}, // underlying {integer(-132), [...]bool{true, false, false, false}}, {uinteger(132), [...]bool{false, true, false, false}}, {float(256.25), [...]bool{false, false, true, false}}, {complex(532.125 + 10i), [...]bool{false, false, false, true}}, // not-acceptable {"hello world", [...]bool{false, false, false, false}}, {new(int), [...]bool{false, false, false, false}}, {new(uint), [...]bool{false, false, false, false}}, {new(float64), [...]bool{false, false, false, false}}, {new(complex64), [...]bool{false, false, false, false}}, {new([5]int), [...]bool{false, false, false, false}}, {new(integer), [...]bool{false, false, false, false}}, {new(map[int]int), [...]bool{false, false, false, false}}, {new(chan<- int), [...]bool{false, false, false, false}}, {new(func(a int8)), [...]bool{false, false, false, false}}, {new(struct{ i int }), [...]bool{false, false, false, false}}, } for i, tc := range testCases { v := ValueOf(tc.i) got := [...]bool{v.CanInt(), v.CanUint(), v.CanFloat(), v.CanComplex()} for j := range tc.want { if got[j] != tc.want[j] { t.Errorf( "#%d: v.%s() returned %t for type %T, want %t", i, ops[j], got[j], tc.i, tc.want[j], ) } } } } func TestCanSetField(t *testing.T) { type embed struct{ x, X int } type Embed struct{ x, X int } type S1 struct { embed x, X int } type S2 struct { *embed x, X int } type S3 struct { Embed x, X int } type S4 struct { *Embed x, X int } type testCase struct { // -1 means Addr().Elem() of current value index []int canSet bool } tests := []struct { val Value cases []testCase }{{ val: ValueOf(&S1{}), cases: []testCase{ {[]int{0}, false}, {[]int{0, -1}, false}, {[]int{0, 0}, false}, {[]int{0, 0, -1}, false}, {[]int{0, -1, 0}, false}, {[]int{0, -1, 0, -1}, false}, {[]int{0, 1}, true}, {[]int{0, 1, -1}, true}, {[]int{0, -1, 1}, true}, {[]int{0, -1, 1, -1}, true}, {[]int{1}, false}, {[]int{1, -1}, false}, {[]int{2}, true}, {[]int{2, -1}, true}, }, }, { val: ValueOf(&S2{embed: &embed{}}), cases: []testCase{ {[]int{0}, false}, {[]int{0, -1}, false}, {[]int{0, 0}, false}, {[]int{0, 0, -1}, false}, {[]int{0, -1, 0}, false}, {[]int{0, -1, 0, -1}, false}, {[]int{0, 1}, true}, {[]int{0, 1, -1}, true}, {[]int{0, -1, 1}, true}, {[]int{0, -1, 1, -1}, true}, {[]int{1}, false}, {[]int{2}, true}, }, }, { val: ValueOf(&S3{}), cases: []testCase{ {[]int{0}, true}, {[]int{0, -1}, true}, {[]int{0, 0}, false}, {[]int{0, 0, -1}, false}, {[]int{0, -1, 0}, false}, {[]int{0, -1, 0, -1}, false}, {[]int{0, 1}, true}, {[]int{0, 1, -1}, true}, {[]int{0, -1, 1}, true}, {[]int{0, -1, 1, -1}, true}, {[]int{1}, false}, {[]int{2}, true}, }, }, { val: ValueOf(&S4{Embed: &Embed{}}), cases: []testCase{ {[]int{0}, true}, {[]int{0, -1}, true}, {[]int{0, 0}, false}, {[]int{0, 0, -1}, false}, {[]int{0, -1, 0}, false}, {[]int{0, -1, 0, -1}, false}, {[]int{0, 1}, true}, {[]int{0, 1, -1}, true}, {[]int{0, -1, 1}, true}, {[]int{0, -1, 1, -1}, true}, {[]int{1}, false}, {[]int{2}, true}, }, }} for _, tt := range tests { t.Run(tt.val.Type().Name(), func(t *testing.T) { for _, tc := range tt.cases { f := tt.val for _, i := range tc.index { if f.Kind() == Pointer { f = f.Elem() } if i == -1 { f = f.Addr().Elem() } else { f = f.Field(i) } } if got := f.CanSet(); got != tc.canSet { t.Errorf("CanSet() = %v, want %v", got, tc.canSet) } } }) } } var _i = 7 var valueToStringTests = []pair{ {123, "123"}, {123.5, "123.5"}, {byte(123), "123"}, {"abc", "abc"}, {T{123, 456.75, "hello", &_i}, "reflect_test.T{123, 456.75, hello, *int(&7)}"}, {new(chan *T), "*chan *reflect_test.T(&chan *reflect_test.T)"}, {[10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, "[10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}"}, {&[10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, "*[10]int(&[10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10})"}, {[]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, "[]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}"}, {&[]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, "*[]int(&[]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10})"}, } func TestValueToString(t *testing.T) { for i, test := range valueToStringTests { s := valueToString(ValueOf(test.i)) if s != test.s { t.Errorf("#%d: have %#q, want %#q", i, s, test.s) } } } func TestArrayElemSet(t *testing.T) { v := ValueOf(&[10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}).Elem() v.Index(4).SetInt(123) s := valueToString(v) const want = "[10]int{1, 2, 3, 4, 123, 6, 7, 8, 9, 10}" if s != want { t.Errorf("[10]int: have %#q want %#q", s, want) } v = ValueOf([]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}) v.Index(4).SetInt(123) s = valueToString(v) const want1 = "[]int{1, 2, 3, 4, 123, 6, 7, 8, 9, 10}" if s != want1 { t.Errorf("[]int: have %#q want %#q", s, want1) } } func TestPtrPointTo(t *testing.T) { var ip *int32 var i int32 = 1234 vip := ValueOf(&ip) vi := ValueOf(&i).Elem() vip.Elem().Set(vi.Addr()) if *ip != 1234 { t.Errorf("got %d, want 1234", *ip) } ip = nil vp := ValueOf(&ip).Elem() vp.Set(Zero(vp.Type())) if ip != nil { t.Errorf("got non-nil (%p), want nil", ip) } } func TestPtrSetNil(t *testing.T) { var i int32 = 1234 ip := &i vip := ValueOf(&ip) vip.Elem().Set(Zero(vip.Elem().Type())) if ip != nil { t.Errorf("got non-nil (%d), want nil", *ip) } } func TestMapSetNil(t *testing.T) { m := make(map[string]int) vm := ValueOf(&m) vm.Elem().Set(Zero(vm.Elem().Type())) if m != nil { t.Errorf("got non-nil (%p), want nil", m) } } func TestAll(t *testing.T) { testType(t, 1, TypeOf((int8)(0)), "int8") testType(t, 2, TypeOf((*int8)(nil)).Elem(), "int8") typ := TypeOf((*struct { c chan *int32 d float32 })(nil)) testType(t, 3, typ, "*struct { c chan *int32; d float32 }") etyp := typ.Elem() testType(t, 4, etyp, "struct { c chan *int32; d float32 }") styp := etyp f := styp.Field(0) testType(t, 5, f.Type, "chan *int32") f, present := styp.FieldByName("d") if !present { t.Errorf("FieldByName says present field is absent") } testType(t, 6, f.Type, "float32") f, present = styp.FieldByName("absent") if present { t.Errorf("FieldByName says absent field is present") } typ = TypeOf([32]int32{}) testType(t, 7, typ, "[32]int32") testType(t, 8, typ.Elem(), "int32") typ = TypeOf((map[string]*int32)(nil)) testType(t, 9, typ, "map[string]*int32") mtyp := typ testType(t, 10, mtyp.Key(), "string") testType(t, 11, mtyp.Elem(), "*int32") typ = TypeOf((chan<- string)(nil)) testType(t, 12, typ, "chan<- string") testType(t, 13, typ.Elem(), "string") // make sure tag strings are not part of element type typ = TypeOf(struct { d []uint32 `reflect:"TAG"` }{}).Field(0).Type testType(t, 14, typ, "[]uint32") } func TestInterfaceGet(t *testing.T) { var inter struct { E any } inter.E = 123.456 v1 := ValueOf(&inter) v2 := v1.Elem().Field(0) assert(t, v2.Type().String(), "interface {}") i2 := v2.Interface() v3 := ValueOf(i2) assert(t, v3.Type().String(), "float64") } func TestInterfaceValue(t *testing.T) { var inter struct { E any } inter.E = 123.456 v1 := ValueOf(&inter) v2 := v1.Elem().Field(0) assert(t, v2.Type().String(), "interface {}") v3 := v2.Elem() assert(t, v3.Type().String(), "float64") i3 := v2.Interface() if _, ok := i3.(float64); !ok { t.Error("v2.Interface() did not return float64, got ", TypeOf(i3)) } } func TestFunctionValue(t *testing.T) { var x any = func() {} v := ValueOf(x) if fmt.Sprint(v.Interface()) != fmt.Sprint(x) { t.Fatalf("TestFunction returned wrong pointer") } assert(t, v.Type().String(), "func()") } func TestGrow(t *testing.T) { v := ValueOf([]int(nil)) shouldPanic("reflect.Value.Grow using unaddressable value", func() { v.Grow(0) }) v = ValueOf(new([]int)).Elem() v.Grow(0) if !v.IsNil() { t.Errorf("v.Grow(0) should still be nil") } v.Grow(1) if v.Cap() == 0 { t.Errorf("v.Cap = %v, want non-zero", v.Cap()) } want := v.UnsafePointer() v.Grow(1) got := v.UnsafePointer() if got != want { t.Errorf("noop v.Grow should not change pointers") } t.Run("Append", func(t *testing.T) { var got, want []T v := ValueOf(&got).Elem() appendValue := func(vt T) { v.Grow(1) v.SetLen(v.Len() + 1) v.Index(v.Len() - 1).Set(ValueOf(vt)) } for i := 0; i < 10; i++ { vt := T{i, float64(i), strconv.Itoa(i), &i} appendValue(vt) want = append(want, vt) } if !DeepEqual(got, want) { t.Errorf("value mismatch:\ngot %v\nwant %v", got, want) } }) t.Run("Rate", func(t *testing.T) { var b []byte v := ValueOf(new([]byte)).Elem() for i := 0; i < 10; i++ { b = append(b[:cap(b)], make([]byte, 1)...) v.SetLen(v.Cap()) v.Grow(1) if v.Cap() != cap(b) { t.Errorf("v.Cap = %v, want %v", v.Cap(), cap(b)) } } }) t.Run("ZeroCapacity", func(t *testing.T) { for i := 0; i < 10; i++ { v := ValueOf(new([]byte)).Elem() v.Grow(61) b := v.Bytes() b = b[:cap(b)] for i, c := range b { if c != 0 { t.Fatalf("Value.Bytes[%d] = 0x%02x, want 0x00", i, c) } b[i] = 0xff } runtime.GC() } }) } var appendTests = []struct { orig, extra []int }{ {nil, nil}, {[]int{}, nil}, {nil, []int{}}, {[]int{}, []int{}}, {nil, []int{22}}, {[]int{}, []int{22}}, {make([]int, 2, 4), nil}, {make([]int, 2, 4), []int{}}, {make([]int, 2, 4), []int{22}}, {make([]int, 2, 4), []int{22, 33, 44}}, } func TestAppend(t *testing.T) { for i, test := range appendTests { origLen, extraLen := len(test.orig), len(test.extra) want := append(test.orig, test.extra...) // Convert extra from []int to []Value. e0 := make([]Value, len(test.extra)) for j, e := range test.extra { e0[j] = ValueOf(e) } // Convert extra from []int to *SliceValue. e1 := ValueOf(test.extra) // Test Append. a0 := ValueOf(&test.orig).Elem() have0 := Append(a0, e0...) if have0.CanAddr() { t.Errorf("Append #%d: have slice should not be addressable", i) } if !DeepEqual(have0.Interface(), want) { t.Errorf("Append #%d: have %v, want %v (%p %p)", i, have0, want, test.orig, have0.Interface()) } // Check that the orig and extra slices were not modified. if a0.Len() != len(test.orig) { t.Errorf("Append #%d: a0.Len: have %d, want %d", i, a0.Len(), origLen) } if len(test.orig) != origLen { t.Errorf("Append #%d origLen: have %v, want %v", i, len(test.orig), origLen) } if len(test.extra) != extraLen { t.Errorf("Append #%d extraLen: have %v, want %v", i, len(test.extra), extraLen) } // Test AppendSlice. a1 := ValueOf(&test.orig).Elem() have1 := AppendSlice(a1, e1) if have1.CanAddr() { t.Errorf("AppendSlice #%d: have slice should not be addressable", i) } if !DeepEqual(have1.Interface(), want) { t.Errorf("AppendSlice #%d: have %v, want %v", i, have1, want) } // Check that the orig and extra slices were not modified. if a1.Len() != len(test.orig) { t.Errorf("AppendSlice #%d: a1.Len: have %d, want %d", i, a0.Len(), origLen) } if len(test.orig) != origLen { t.Errorf("AppendSlice #%d origLen: have %v, want %v", i, len(test.orig), origLen) } if len(test.extra) != extraLen { t.Errorf("AppendSlice #%d extraLen: have %v, want %v", i, len(test.extra), extraLen) } // Test Append and AppendSlice with unexported value. ax := ValueOf(struct{ x []int }{test.orig}).Field(0) shouldPanic("using unexported field", func() { Append(ax, e0...) }) shouldPanic("using unexported field", func() { AppendSlice(ax, e1) }) } } func TestCopy(t *testing.T) { a := []int{1, 2, 3, 4, 10, 9, 8, 7} b := []int{11, 22, 33, 44, 1010, 99, 88, 77, 66, 55, 44} c := []int{11, 22, 33, 44, 1010, 99, 88, 77, 66, 55, 44} for i := 0; i < len(b); i++ { if b[i] != c[i] { t.Fatalf("b != c before test") } } a1 := a b1 := b aa := ValueOf(&a1).Elem() ab := ValueOf(&b1).Elem() for tocopy := 1; tocopy <= 7; tocopy++ { aa.SetLen(tocopy) Copy(ab, aa) aa.SetLen(8) for i := 0; i < tocopy; i++ { if a[i] != b[i] { t.Errorf("(i) tocopy=%d a[%d]=%d, b[%d]=%d", tocopy, i, a[i], i, b[i]) } } for i := tocopy; i < len(b); i++ { if b[i] != c[i] { if i < len(a) { t.Errorf("(ii) tocopy=%d a[%d]=%d, b[%d]=%d, c[%d]=%d", tocopy, i, a[i], i, b[i], i, c[i]) } else { t.Errorf("(iii) tocopy=%d b[%d]=%d, c[%d]=%d", tocopy, i, b[i], i, c[i]) } } else { t.Logf("tocopy=%d elem %d is okay\n", tocopy, i) } } } } func TestCopyString(t *testing.T) { t.Run("Slice", func(t *testing.T) { s := bytes.Repeat([]byte{'_'}, 8) val := ValueOf(s) n := Copy(val, ValueOf("")) if expecting := []byte("________"); n != 0 || !bytes.Equal(s, expecting) { t.Errorf("got n = %d, s = %s, expecting n = 0, s = %s", n, s, expecting) } n = Copy(val, ValueOf("hello")) if expecting := []byte("hello___"); n != 5 || !bytes.Equal(s, expecting) { t.Errorf("got n = %d, s = %s, expecting n = 5, s = %s", n, s, expecting) } n = Copy(val, ValueOf("helloworld")) if expecting := []byte("hellowor"); n != 8 || !bytes.Equal(s, expecting) { t.Errorf("got n = %d, s = %s, expecting n = 8, s = %s", n, s, expecting) } }) t.Run("Array", func(t *testing.T) { s := [...]byte{'_', '_', '_', '_', '_', '_', '_', '_'} val := ValueOf(&s).Elem() n := Copy(val, ValueOf("")) if expecting := []byte("________"); n != 0 || !bytes.Equal(s[:], expecting) { t.Errorf("got n = %d, s = %s, expecting n = 0, s = %s", n, s[:], expecting) } n = Copy(val, ValueOf("hello")) if expecting := []byte("hello___"); n != 5 || !bytes.Equal(s[:], expecting) { t.Errorf("got n = %d, s = %s, expecting n = 5, s = %s", n, s[:], expecting) } n = Copy(val, ValueOf("helloworld")) if expecting := []byte("hellowor"); n != 8 || !bytes.Equal(s[:], expecting) { t.Errorf("got n = %d, s = %s, expecting n = 8, s = %s", n, s[:], expecting) } }) } func TestCopyArray(t *testing.T) { a := [8]int{1, 2, 3, 4, 10, 9, 8, 7} b := [11]int{11, 22, 33, 44, 1010, 99, 88, 77, 66, 55, 44} c := b aa := ValueOf(&a).Elem() ab := ValueOf(&b).Elem() Copy(ab, aa) for i := 0; i < len(a); i++ { if a[i] != b[i] { t.Errorf("(i) a[%d]=%d, b[%d]=%d", i, a[i], i, b[i]) } } for i := len(a); i < len(b); i++ { if b[i] != c[i] { t.Errorf("(ii) b[%d]=%d, c[%d]=%d", i, b[i], i, c[i]) } else { t.Logf("elem %d is okay\n", i) } } } func TestBigUnnamedStruct(t *testing.T) { b := struct{ a, b, c, d int64 }{1, 2, 3, 4} v := ValueOf(b) b1 := v.Interface().(struct { a, b, c, d int64 }) if b1.a != b.a || b1.b != b.b || b1.c != b.c || b1.d != b.d { t.Errorf("ValueOf(%v).Interface().(*Big) = %v", b, b1) } } type big struct { a, b, c, d, e int64 } func TestBigStruct(t *testing.T) { b := big{1, 2, 3, 4, 5} v := ValueOf(b) b1 := v.Interface().(big) if b1.a != b.a || b1.b != b.b || b1.c != b.c || b1.d != b.d || b1.e != b.e { t.Errorf("ValueOf(%v).Interface().(big) = %v", b, b1) } } type Basic struct { x int y float32 } type NotBasic Basic type DeepEqualTest struct { a, b any eq bool } // Simple functions for DeepEqual tests. var ( fn1 func() // nil. fn2 func() // nil. fn3 = func() { fn1() } // Not nil. ) type self struct{} type Loop *Loop type Loopy any var loop1, loop2 Loop var loopy1, loopy2 Loopy var cycleMap1, cycleMap2, cycleMap3 map[string]any type structWithSelfPtr struct { p *structWithSelfPtr s string } func init() { loop1 = &loop2 loop2 = &loop1 loopy1 = &loopy2 loopy2 = &loopy1 cycleMap1 = map[string]any{} cycleMap1["cycle"] = cycleMap1 cycleMap2 = map[string]any{} cycleMap2["cycle"] = cycleMap2 cycleMap3 = map[string]any{} cycleMap3["different"] = cycleMap3 } var deepEqualTests = []DeepEqualTest{ // Equalities {nil, nil, true}, {1, 1, true}, {int32(1), int32(1), true}, {0.5, 0.5, true}, {float32(0.5), float32(0.5), true}, {"hello", "hello", true}, {make([]int, 10), make([]int, 10), true}, {&[3]int{1, 2, 3}, &[3]int{1, 2, 3}, true}, {Basic{1, 0.5}, Basic{1, 0.5}, true}, {error(nil), error(nil), true}, {map[int]string{1: "one", 2: "two"}, map[int]string{2: "two", 1: "one"}, true}, {fn1, fn2, true}, {[]byte{1, 2, 3}, []byte{1, 2, 3}, true}, {[]MyByte{1, 2, 3}, []MyByte{1, 2, 3}, true}, {MyBytes{1, 2, 3}, MyBytes{1, 2, 3}, true}, // Inequalities {1, 2, false}, {int32(1), int32(2), false}, {0.5, 0.6, false}, {float32(0.5), float32(0.6), false}, {"hello", "hey", false}, {make([]int, 10), make([]int, 11), false}, {&[3]int{1, 2, 3}, &[3]int{1, 2, 4}, false}, {Basic{1, 0.5}, Basic{1, 0.6}, false}, {Basic{1, 0}, Basic{2, 0}, false}, {map[int]string{1: "one", 3: "two"}, map[int]string{2: "two", 1: "one"}, false}, {map[int]string{1: "one", 2: "txo"}, map[int]string{2: "two", 1: "one"}, false}, {map[int]string{1: "one"}, map[int]string{2: "two", 1: "one"}, false}, {map[int]string{2: "two", 1: "one"}, map[int]string{1: "one"}, false}, {nil, 1, false}, {1, nil, false}, {fn1, fn3, false}, {fn3, fn3, false}, {[][]int{{1}}, [][]int{{2}}, false}, {&structWithSelfPtr{p: &structWithSelfPtr{s: "a"}}, &structWithSelfPtr{p: &structWithSelfPtr{s: "b"}}, false}, // Fun with floating point. {math.NaN(), math.NaN(), false}, {&[1]float64{math.NaN()}, &[1]float64{math.NaN()}, false}, {&[1]float64{math.NaN()}, self{}, true}, {[]float64{math.NaN()}, []float64{math.NaN()}, false}, {[]float64{math.NaN()}, self{}, true}, {map[float64]float64{math.NaN(): 1}, map[float64]float64{1: 2}, false}, {map[float64]float64{math.NaN(): 1}, self{}, true}, // Nil vs empty: not the same. {[]int{}, []int(nil), false}, {[]int{}, []int{}, true}, {[]int(nil), []int(nil), true}, {map[int]int{}, map[int]int(nil), false}, {map[int]int{}, map[int]int{}, true}, {map[int]int(nil), map[int]int(nil), true}, // Mismatched types {1, 1.0, false}, {int32(1), int64(1), false}, {0.5, "hello", false}, {[]int{1, 2, 3}, [3]int{1, 2, 3}, false}, {&[3]any{1, 2, 4}, &[3]any{1, 2, "s"}, false}, {Basic{1, 0.5}, NotBasic{1, 0.5}, false}, {map[uint]string{1: "one", 2: "two"}, map[int]string{2: "two", 1: "one"}, false}, {[]byte{1, 2, 3}, []MyByte{1, 2, 3}, false}, {[]MyByte{1, 2, 3}, MyBytes{1, 2, 3}, false}, {[]byte{1, 2, 3}, MyBytes{1, 2, 3}, false}, // Possible loops. {&loop1, &loop1, true}, {&loop1, &loop2, true}, {&loopy1, &loopy1, true}, {&loopy1, &loopy2, true}, {&cycleMap1, &cycleMap2, true}, {&cycleMap1, &cycleMap3, false}, } func TestDeepEqual(t *testing.T) { for _, test := range deepEqualTests { if test.b == (self{}) { test.b = test.a } if r := DeepEqual(test.a, test.b); r != test.eq { t.Errorf("DeepEqual(%#v, %#v) = %v, want %v", test.a, test.b, r, test.eq) } } } func TestTypeOf(t *testing.T) { // Special case for nil if typ := TypeOf(nil); typ != nil { t.Errorf("expected nil type for nil value; got %v", typ) } for _, test := range deepEqualTests { v := ValueOf(test.a) if !v.IsValid() { continue } typ := TypeOf(test.a) if typ != v.Type() { t.Errorf("TypeOf(%v) = %v, but ValueOf(%v).Type() = %v", test.a, typ, test.a, v.Type()) } } } type Recursive struct { x int r *Recursive } func TestDeepEqualRecursiveStruct(t *testing.T) { a, b := new(Recursive), new(Recursive) *a = Recursive{12, a} *b = Recursive{12, b} if !DeepEqual(a, b) { t.Error("DeepEqual(recursive same) = false, want true") } } type _Complex struct { a int b [3]*_Complex c *string d map[float64]float64 } func TestDeepEqualComplexStruct(t *testing.T) { m := make(map[float64]float64) stra, strb := "hello", "hello" a, b := new(_Complex), new(_Complex) *a = _Complex{5, [3]*_Complex{a, b, a}, &stra, m} *b = _Complex{5, [3]*_Complex{b, a, a}, &strb, m} if !DeepEqual(a, b) { t.Error("DeepEqual(complex same) = false, want true") } } func TestDeepEqualComplexStructInequality(t *testing.T) { m := make(map[float64]float64) stra, strb := "hello", "helloo" // Difference is here a, b := new(_Complex), new(_Complex) *a = _Complex{5, [3]*_Complex{a, b, a}, &stra, m} *b = _Complex{5, [3]*_Complex{b, a, a}, &strb, m} if DeepEqual(a, b) { t.Error("DeepEqual(complex different) = true, want false") } } type UnexpT struct { m map[int]int } func TestDeepEqualUnexportedMap(t *testing.T) { // Check that DeepEqual can look at unexported fields. x1 := UnexpT{map[int]int{1: 2}} x2 := UnexpT{map[int]int{1: 2}} if !DeepEqual(&x1, &x2) { t.Error("DeepEqual(x1, x2) = false, want true") } y1 := UnexpT{map[int]int{2: 3}} if DeepEqual(&x1, &y1) { t.Error("DeepEqual(x1, y1) = true, want false") } } var deepEqualPerfTests = []struct { x, y any }{ {x: int8(99), y: int8(99)}, {x: []int8{99}, y: []int8{99}}, {x: int16(99), y: int16(99)}, {x: []int16{99}, y: []int16{99}}, {x: int32(99), y: int32(99)}, {x: []int32{99}, y: []int32{99}}, {x: int64(99), y: int64(99)}, {x: []int64{99}, y: []int64{99}}, {x: int(999999), y: int(999999)}, {x: []int{999999}, y: []int{999999}}, {x: uint8(99), y: uint8(99)}, {x: []uint8{99}, y: []uint8{99}}, {x: uint16(99), y: uint16(99)}, {x: []uint16{99}, y: []uint16{99}}, {x: uint32(99), y: uint32(99)}, {x: []uint32{99}, y: []uint32{99}}, {x: uint64(99), y: uint64(99)}, {x: []uint64{99}, y: []uint64{99}}, {x: uint(999999), y: uint(999999)}, {x: []uint{999999}, y: []uint{999999}}, {x: uintptr(999999), y: uintptr(999999)}, {x: []uintptr{999999}, y: []uintptr{999999}}, {x: float32(1.414), y: float32(1.414)}, {x: []float32{1.414}, y: []float32{1.414}}, {x: float64(1.414), y: float64(1.414)}, {x: []float64{1.414}, y: []float64{1.414}}, {x: complex64(1.414), y: complex64(1.414)}, {x: []complex64{1.414}, y: []complex64{1.414}}, {x: complex128(1.414), y: complex128(1.414)}, {x: []complex128{1.414}, y: []complex128{1.414}}, {x: true, y: true}, {x: []bool{true}, y: []bool{true}}, {x: "abcdef", y: "abcdef"}, {x: []string{"abcdef"}, y: []string{"abcdef"}}, {x: []byte("abcdef"), y: []byte("abcdef")}, {x: [][]byte{[]byte("abcdef")}, y: [][]byte{[]byte("abcdef")}}, {x: [6]byte{'a', 'b', 'c', 'a', 'b', 'c'}, y: [6]byte{'a', 'b', 'c', 'a', 'b', 'c'}}, {x: [][6]byte{[6]byte{'a', 'b', 'c', 'a', 'b', 'c'}}, y: [][6]byte{[6]byte{'a', 'b', 'c', 'a', 'b', 'c'}}}, } func TestDeepEqualAllocs(t *testing.T) { for _, tt := range deepEqualPerfTests { t.Run(ValueOf(tt.x).Type().String(), func(t *testing.T) { got := testing.AllocsPerRun(100, func() { if !DeepEqual(tt.x, tt.y) { t.Errorf("DeepEqual(%v, %v)=false", tt.x, tt.y) } }) if int(got) != 0 { t.Errorf("DeepEqual(%v, %v) allocated %d times", tt.x, tt.y, int(got)) } }) } } func check2ndField(x any, offs uintptr, t *testing.T) { s := ValueOf(x) f := s.Type().Field(1) if f.Offset != offs { t.Error("mismatched offsets in structure alignment:", f.Offset, offs) } } // Check that structure alignment & offsets viewed through reflect agree with those // from the compiler itself. func TestAlignment(t *testing.T) { type T1inner struct { a int } type T1 struct { T1inner f int } type T2inner struct { a, b int } type T2 struct { T2inner f int } x := T1{T1inner{2}, 17} check2ndField(x, uintptr(unsafe.Pointer(&x.f))-uintptr(unsafe.Pointer(&x)), t) x1 := T2{T2inner{2, 3}, 17} check2ndField(x1, uintptr(unsafe.Pointer(&x1.f))-uintptr(unsafe.Pointer(&x1)), t) } func Nil(a any, t *testing.T) { n := ValueOf(a).Field(0) if !n.IsNil() { t.Errorf("%v should be nil", a) } } func NotNil(a any, t *testing.T) { n := ValueOf(a).Field(0) if n.IsNil() { t.Errorf("value of type %v should not be nil", ValueOf(a).Type().String()) } } func TestIsNil(t *testing.T) { // These implement IsNil. // Wrap in extra struct to hide interface type. doNil := []any{ struct{ x *int }{}, struct{ x any }{}, struct{ x map[string]int }{}, struct{ x func() bool }{}, struct{ x chan int }{}, struct{ x []string }{}, struct{ x unsafe.Pointer }{}, } for _, ts := range doNil { ty := TypeOf(ts).Field(0).Type v := Zero(ty) v.IsNil() // panics if not okay to call } // Check the implementations var pi struct { x *int } Nil(pi, t) pi.x = new(int) NotNil(pi, t) var si struct { x []int } Nil(si, t) si.x = make([]int, 10) NotNil(si, t) var ci struct { x chan int } Nil(ci, t) ci.x = make(chan int) NotNil(ci, t) var mi struct { x map[int]int } Nil(mi, t) mi.x = make(map[int]int) NotNil(mi, t) var ii struct { x any } Nil(ii, t) ii.x = 2 NotNil(ii, t) var fi struct { x func(t *testing.T) } Nil(fi, t) fi.x = TestIsNil NotNil(fi, t) } func setField[S, V any](in S, offset uintptr, value V) (out S) { *(*V)(unsafe.Add(unsafe.Pointer(&in), offset)) = value return in } func TestIsZero(t *testing.T) { for i, tt := range []struct { x any want bool }{ // Booleans {true, false}, {false, true}, // Numeric types {int(0), true}, {int(1), false}, {int8(0), true}, {int8(1), false}, {int16(0), true}, {int16(1), false}, {int32(0), true}, {int32(1), false}, {int64(0), true}, {int64(1), false}, {uint(0), true}, {uint(1), false}, {uint8(0), true}, {uint8(1), false}, {uint16(0), true}, {uint16(1), false}, {uint32(0), true}, {uint32(1), false}, {uint64(0), true}, {uint64(1), false}, {float32(0), true}, {float32(1.2), false}, {float64(0), true}, {float64(1.2), false}, {math.Copysign(0, -1), true}, {complex64(0), true}, {complex64(1.2), false}, {complex128(0), true}, {complex128(1.2), false}, {complex(math.Copysign(0, -1), 0), true}, {complex(0, math.Copysign(0, -1)), true}, {complex(math.Copysign(0, -1), math.Copysign(0, -1)), true}, {uintptr(0), true}, {uintptr(128), false}, // Array {Zero(TypeOf([5]string{})).Interface(), true}, {[5]string{}, true}, // comparable array {[5]string{"", "", "", "a", ""}, false}, // comparable array {[1]*int{}, true}, // direct pointer array {[1]*int{new(int)}, false}, // direct pointer array {[3][]int{}, true}, // incomparable array {[3][]int{{1}}, false}, // incomparable array {[1 << 12]byte{}, true}, {[1 << 12]byte{1}, false}, {[1]struct{ p *int }{}, true}, {[1]struct{ p *int }{{new(int)}}, false}, {[3]Value{}, true}, {[3]Value{{}, ValueOf(0), {}}, false}, // Chan {(chan string)(nil), true}, {make(chan string), false}, {time.After(1), false}, // Func {(func())(nil), true}, {New, false}, // Interface {New(TypeOf(new(error)).Elem()).Elem(), true}, {(io.Reader)(strings.NewReader("")), false}, // Map {(map[string]string)(nil), true}, {map[string]string{}, false}, {make(map[string]string), false}, // Pointer {(*func())(nil), true}, {(*int)(nil), true}, {new(int), false}, // Slice {[]string{}, false}, {([]string)(nil), true}, {make([]string, 0), false}, // Strings {"", true}, {"not-zero", false}, // Structs {T{}, true}, // comparable struct {T{123, 456.75, "hello", &_i}, false}, // comparable struct {struct{ p *int }{}, true}, // direct pointer struct {struct{ p *int }{new(int)}, false}, // direct pointer struct {struct{ s []int }{}, true}, // incomparable struct {struct{ s []int }{[]int{1}}, false}, // incomparable struct {struct{ Value }{}, true}, {struct{ Value }{ValueOf(0)}, false}, {struct{ _, a, _ uintptr }{}, true}, // comparable struct with blank fields {setField(struct{ _, a, _ uintptr }{}, 0*unsafe.Sizeof(uintptr(0)), 1), true}, {setField(struct{ _, a, _ uintptr }{}, 1*unsafe.Sizeof(uintptr(0)), 1), false}, {setField(struct{ _, a, _ uintptr }{}, 2*unsafe.Sizeof(uintptr(0)), 1), true}, {struct{ _, a, _ func() }{}, true}, // incomparable struct with blank fields {setField(struct{ _, a, _ func() }{}, 0*unsafe.Sizeof((func())(nil)), func() {}), true}, {setField(struct{ _, a, _ func() }{}, 1*unsafe.Sizeof((func())(nil)), func() {}), false}, {setField(struct{ _, a, _ func() }{}, 2*unsafe.Sizeof((func())(nil)), func() {}), true}, {struct{ a [256]S }{}, true}, {struct{ a [256]S }{a: [256]S{2: {i1: 1}}}, false}, {struct{ a [256]float32 }{}, true}, {struct{ a [256]float32 }{a: [256]float32{2: 1.0}}, false}, {struct{ _, a [256]S }{}, true}, {setField(struct{ _, a [256]S }{}, 0*unsafe.Sizeof(int64(0)), int64(1)), true}, // UnsafePointer {(unsafe.Pointer)(nil), true}, {(unsafe.Pointer)(new(int)), false}, } { var x Value if v, ok := tt.x.(Value); ok { x = v } else { x = ValueOf(tt.x) } b := x.IsZero() if b != tt.want { t.Errorf("%d: IsZero((%s)(%+v)) = %t, want %t", i, x.Kind(), tt.x, b, tt.want) } if !Zero(TypeOf(tt.x)).IsZero() { t.Errorf("%d: IsZero(Zero(TypeOf((%s)(%+v)))) is false", i, x.Kind(), tt.x) } p := New(x.Type()).Elem() p.Set(x) p.SetZero() if !p.IsZero() { t.Errorf("%d: IsZero((%s)(%+v)) is true after SetZero", i, p.Kind(), tt.x) } } func() { defer func() { if r := recover(); r == nil { t.Error("should panic for invalid value") } }() (Value{}).IsZero() }() } func TestInternalIsZero(t *testing.T) { b := make([]byte, 512) for a := 0; a < 8; a++ { for i := 1; i <= 512-a; i++ { InternalIsZero(b[a : a+i]) } } } func TestInterfaceExtraction(t *testing.T) { var s struct { W io.Writer } s.W = os.Stdout v := Indirect(ValueOf(&s)).Field(0).Interface() if v != s.W.(any) { t.Error("Interface() on interface: ", v, s.W) } } func TestNilPtrValueSub(t *testing.T) { var pi *int if pv := ValueOf(pi); pv.Elem().IsValid() { t.Error("ValueOf((*int)(nil)).Elem().IsValid()") } } func TestMap(t *testing.T) { m := map[string]int{"a": 1, "b": 2} mv := ValueOf(m) if n := mv.Len(); n != len(m) { t.Errorf("Len = %d, want %d", n, len(m)) } keys := mv.MapKeys() newmap := MakeMap(mv.Type()) for k, v := range m { // Check that returned Keys match keys in range. // These aren't required to be in the same order. seen := false for _, kv := range keys { if kv.String() == k { seen = true break } } if !seen { t.Errorf("Missing key %q", k) } // Check that value lookup is correct. vv := mv.MapIndex(ValueOf(k)) if vi := vv.Int(); vi != int64(v) { t.Errorf("Key %q: have value %d, want %d", k, vi, v) } // Copy into new map. newmap.SetMapIndex(ValueOf(k), ValueOf(v)) } vv := mv.MapIndex(ValueOf("not-present")) if vv.IsValid() { t.Errorf("Invalid key: got non-nil value %s", valueToString(vv)) } newm := newmap.Interface().(map[string]int) if len(newm) != len(m) { t.Errorf("length after copy: newm=%d, m=%d", len(newm), len(m)) } for k, v := range newm { mv, ok := m[k] if mv != v { t.Errorf("newm[%q] = %d, but m[%q] = %d, %v", k, v, k, mv, ok) } } newmap.SetMapIndex(ValueOf("a"), Value{}) v, ok := newm["a"] if ok { t.Errorf("newm[\"a\"] = %d after delete", v) } mv = ValueOf(&m).Elem() mv.Set(Zero(mv.Type())) if m != nil { t.Errorf("mv.Set(nil) failed") } type S string shouldPanic("not assignable", func() { mv.MapIndex(ValueOf(S("key"))) }) shouldPanic("not assignable", func() { mv.SetMapIndex(ValueOf(S("key")), ValueOf(0)) }) } func TestNilMap(t *testing.T) { var m map[string]int mv := ValueOf(m) keys := mv.MapKeys() if len(keys) != 0 { t.Errorf(">0 keys for nil map: %v", keys) } // Check that value for missing key is zero. x := mv.MapIndex(ValueOf("hello")) if x.Kind() != Invalid { t.Errorf("m.MapIndex(\"hello\") for nil map = %v, want Invalid Value", x) } // Check big value too. var mbig map[string][10 << 20]byte x = ValueOf(mbig).MapIndex(ValueOf("hello")) if x.Kind() != Invalid { t.Errorf("mbig.MapIndex(\"hello\") for nil map = %v, want Invalid Value", x) } // Test that deletes from a nil map succeed. mv.SetMapIndex(ValueOf("hi"), Value{}) } func TestChan(t *testing.T) { for loop := 0; loop < 2; loop++ { var c chan int var cv Value // check both ways to allocate channels switch loop { case 1: c = make(chan int, 1) cv = ValueOf(c) case 0: cv = MakeChan(TypeOf(c), 1) c = cv.Interface().(chan int) } // Send cv.Send(ValueOf(2)) if i := <-c; i != 2 { t.Errorf("reflect Send 2, native recv %d", i) } // Recv c <- 3 if i, ok := cv.Recv(); i.Int() != 3 || !ok { t.Errorf("native send 3, reflect Recv %d, %t", i.Int(), ok) } // TryRecv fail val, ok := cv.TryRecv() if val.IsValid() || ok { t.Errorf("TryRecv on empty chan: %s, %t", valueToString(val), ok) } // TryRecv success c <- 4 val, ok = cv.TryRecv() if !val.IsValid() { t.Errorf("TryRecv on ready chan got nil") } else if i := val.Int(); i != 4 || !ok { t.Errorf("native send 4, TryRecv %d, %t", i, ok) } // TrySend fail c <- 100 ok = cv.TrySend(ValueOf(5)) i := <-c if ok { t.Errorf("TrySend on full chan succeeded: value %d", i) } // TrySend success ok = cv.TrySend(ValueOf(6)) if !ok { t.Errorf("TrySend on empty chan failed") select { case x := <-c: t.Errorf("TrySend failed but it did send %d", x) default: } } else { if i = <-c; i != 6 { t.Errorf("TrySend 6, recv %d", i) } } // Close c <- 123 cv.Close() if i, ok := cv.Recv(); i.Int() != 123 || !ok { t.Errorf("send 123 then close; Recv %d, %t", i.Int(), ok) } if i, ok := cv.Recv(); i.Int() != 0 || ok { t.Errorf("after close Recv %d, %t", i.Int(), ok) } // Closing a read-only channel shouldPanic("", func() { c := make(<-chan int, 1) cv := ValueOf(c) cv.Close() }) } // check creation of unbuffered channel var c chan int cv := MakeChan(TypeOf(c), 0) c = cv.Interface().(chan int) if cv.TrySend(ValueOf(7)) { t.Errorf("TrySend on sync chan succeeded") } if v, ok := cv.TryRecv(); v.IsValid() || ok { t.Errorf("TryRecv on sync chan succeeded: isvalid=%v ok=%v", v.IsValid(), ok) } // len/cap cv = MakeChan(TypeOf(c), 10) c = cv.Interface().(chan int) for i := 0; i < 3; i++ { c <- i } if l, m := cv.Len(), cv.Cap(); l != len(c) || m != cap(c) { t.Errorf("Len/Cap = %d/%d want %d/%d", l, m, len(c), cap(c)) } } // caseInfo describes a single case in a select test. type caseInfo struct { desc string canSelect bool recv Value closed bool helper func() panic bool } var allselect = flag.Bool("allselect", false, "exhaustive select test") func TestSelect(t *testing.T) { selectWatch.once.Do(func() { go selectWatcher() }) var x exhaustive nch := 0 newop := func(n int, cap int) (ch, val Value) { nch++ if nch%101%2 == 1 { c := make(chan int, cap) ch = ValueOf(c) val = ValueOf(n) } else { c := make(chan string, cap) ch = ValueOf(c) val = ValueOf(fmt.Sprint(n)) } return } for n := 0; x.Next(); n++ { if testing.Short() && n >= 1000 { break } if n >= 100000 && !*allselect { break } if n%100000 == 0 && testing.Verbose() { println("TestSelect", n) } var cases []SelectCase var info []caseInfo // Ready send. if x.Maybe() { ch, val := newop(len(cases), 1) cases = append(cases, SelectCase{ Dir: SelectSend, Chan: ch, Send: val, }) info = append(info, caseInfo{desc: "ready send", canSelect: true}) } // Ready recv. if x.Maybe() { ch, val := newop(len(cases), 1) ch.Send(val) cases = append(cases, SelectCase{ Dir: SelectRecv, Chan: ch, }) info = append(info, caseInfo{desc: "ready recv", canSelect: true, recv: val}) } // Blocking send. if x.Maybe() { ch, val := newop(len(cases), 0) cases = append(cases, SelectCase{ Dir: SelectSend, Chan: ch, Send: val, }) // Let it execute? if x.Maybe() { f := func() { ch.Recv() } info = append(info, caseInfo{desc: "blocking send", helper: f}) } else { info = append(info, caseInfo{desc: "blocking send"}) } } // Blocking recv. if x.Maybe() { ch, val := newop(len(cases), 0) cases = append(cases, SelectCase{ Dir: SelectRecv, Chan: ch, }) // Let it execute? if x.Maybe() { f := func() { ch.Send(val) } info = append(info, caseInfo{desc: "blocking recv", recv: val, helper: f}) } else { info = append(info, caseInfo{desc: "blocking recv"}) } } // Zero Chan send. if x.Maybe() { // Maybe include value to send. var val Value if x.Maybe() { val = ValueOf(100) } cases = append(cases, SelectCase{ Dir: SelectSend, Send: val, }) info = append(info, caseInfo{desc: "zero Chan send"}) } // Zero Chan receive. if x.Maybe() { cases = append(cases, SelectCase{ Dir: SelectRecv, }) info = append(info, caseInfo{desc: "zero Chan recv"}) } // nil Chan send. if x.Maybe() { cases = append(cases, SelectCase{ Dir: SelectSend, Chan: ValueOf((chan int)(nil)), Send: ValueOf(101), }) info = append(info, caseInfo{desc: "nil Chan send"}) } // nil Chan recv. if x.Maybe() { cases = append(cases, SelectCase{ Dir: SelectRecv, Chan: ValueOf((chan int)(nil)), }) info = append(info, caseInfo{desc: "nil Chan recv"}) } // closed Chan send. if x.Maybe() { ch := make(chan int) close(ch) cases = append(cases, SelectCase{ Dir: SelectSend, Chan: ValueOf(ch), Send: ValueOf(101), }) info = append(info, caseInfo{desc: "closed Chan send", canSelect: true, panic: true}) } // closed Chan recv. if x.Maybe() { ch, val := newop(len(cases), 0) ch.Close() val = Zero(val.Type()) cases = append(cases, SelectCase{ Dir: SelectRecv, Chan: ch, }) info = append(info, caseInfo{desc: "closed Chan recv", canSelect: true, closed: true, recv: val}) } var helper func() // goroutine to help the select complete // Add default? Must be last case here, but will permute. // Add the default if the select would otherwise // block forever, and maybe add it anyway. numCanSelect := 0 canProceed := false canBlock := true canPanic := false helpers := []int{} for i, c := range info { if c.canSelect { canProceed = true canBlock = false numCanSelect++ if c.panic { canPanic = true } } else if c.helper != nil { canProceed = true helpers = append(helpers, i) } } if !canProceed || x.Maybe() { cases = append(cases, SelectCase{ Dir: SelectDefault, }) info = append(info, caseInfo{desc: "default", canSelect: canBlock}) numCanSelect++ } else if canBlock { // Select needs to communicate with another goroutine. cas := &info[helpers[x.Choose(len(helpers))]] helper = cas.helper cas.canSelect = true numCanSelect++ } // Permute cases and case info. // Doing too much here makes the exhaustive loop // too exhausting, so just do two swaps. for loop := 0; loop < 2; loop++ { i := x.Choose(len(cases)) j := x.Choose(len(cases)) cases[i], cases[j] = cases[j], cases[i] info[i], info[j] = info[j], info[i] } if helper != nil { // We wait before kicking off a goroutine to satisfy a blocked select. // The pause needs to be big enough to let the select block before // we run the helper, but if we lose that race once in a while it's okay: the // select will just proceed immediately. Not a big deal. // For short tests we can grow [sic] the timeout a bit without fear of taking too long pause := 10 * time.Microsecond if testing.Short() { pause = 100 * time.Microsecond } time.AfterFunc(pause, helper) } // Run select. i, recv, recvOK, panicErr := runSelect(cases, info) if panicErr != nil && !canPanic { t.Fatalf("%s\npanicked unexpectedly: %v", fmtSelect(info), panicErr) } if panicErr == nil && canPanic && numCanSelect == 1 { t.Fatalf("%s\nselected #%d incorrectly (should panic)", fmtSelect(info), i) } if panicErr != nil { continue } cas := info[i] if !cas.canSelect { recvStr := "" if recv.IsValid() { recvStr = fmt.Sprintf(", received %v, %v", recv.Interface(), recvOK) } t.Fatalf("%s\nselected #%d incorrectly%s", fmtSelect(info), i, recvStr) } if cas.panic { t.Fatalf("%s\nselected #%d incorrectly (case should panic)", fmtSelect(info), i) } if cases[i].Dir == SelectRecv { if !recv.IsValid() { t.Fatalf("%s\nselected #%d but got %v, %v, want %v, %v", fmtSelect(info), i, recv, recvOK, cas.recv.Interface(), !cas.closed) } if !cas.recv.IsValid() { t.Fatalf("%s\nselected #%d but internal error: missing recv value", fmtSelect(info), i) } if recv.Interface() != cas.recv.Interface() || recvOK != !cas.closed { if recv.Interface() == cas.recv.Interface() && recvOK == !cas.closed { t.Fatalf("%s\nselected #%d, got %#v, %v, and DeepEqual is broken on %T", fmtSelect(info), i, recv.Interface(), recvOK, recv.Interface()) } t.Fatalf("%s\nselected #%d but got %#v, %v, want %#v, %v", fmtSelect(info), i, recv.Interface(), recvOK, cas.recv.Interface(), !cas.closed) } } else { if recv.IsValid() || recvOK { t.Fatalf("%s\nselected #%d but got %v, %v, want %v, %v", fmtSelect(info), i, recv, recvOK, Value{}, false) } } } } func TestSelectMaxCases(t *testing.T) { var sCases []SelectCase channel := make(chan int) close(channel) for i := 0; i < 65536; i++ { sCases = append(sCases, SelectCase{ Dir: SelectRecv, Chan: ValueOf(channel), }) } // Should not panic _, _, _ = Select(sCases) sCases = append(sCases, SelectCase{ Dir: SelectRecv, Chan: ValueOf(channel), }) defer func() { if err := recover(); err != nil { if err.(string) != "reflect.Select: too many cases (max 65536)" { t.Fatalf("unexpected error from select call with greater than max supported cases") } } else { t.Fatalf("expected select call to panic with greater than max supported cases") } }() // Should panic _, _, _ = Select(sCases) } func TestSelectNop(t *testing.T) { // "select { default: }" should always return the default case. chosen, _, _ := Select([]SelectCase{{Dir: SelectDefault}}) if chosen != 0 { t.Fatalf("expected Select to return 0, but got %#v", chosen) } } // selectWatch and the selectWatcher are a watchdog mechanism for running Select. // If the selectWatcher notices that the select has been blocked for >1 second, it prints // an error describing the select and panics the entire test binary. var selectWatch struct { sync.Mutex once sync.Once now time.Time info []caseInfo } func selectWatcher() { for { time.Sleep(1 * time.Second) selectWatch.Lock() if selectWatch.info != nil && time.Since(selectWatch.now) > 10*time.Second { fmt.Fprintf(os.Stderr, "TestSelect:\n%s blocked indefinitely\n", fmtSelect(selectWatch.info)) panic("select stuck") } selectWatch.Unlock() } } // runSelect runs a single select test. // It returns the values returned by Select but also returns // a panic value if the Select panics. func runSelect(cases []SelectCase, info []caseInfo) (chosen int, recv Value, recvOK bool, panicErr any) { defer func() { panicErr = recover() selectWatch.Lock() selectWatch.info = nil selectWatch.Unlock() }() selectWatch.Lock() selectWatch.now = time.Now() selectWatch.info = info selectWatch.Unlock() chosen, recv, recvOK = Select(cases) return } // fmtSelect formats the information about a single select test. func fmtSelect(info []caseInfo) string { var buf strings.Builder fmt.Fprintf(&buf, "\nselect {\n") for i, cas := range info { fmt.Fprintf(&buf, "%d: %s", i, cas.desc) if cas.recv.IsValid() { fmt.Fprintf(&buf, " val=%#v", cas.recv.Interface()) } if cas.canSelect { fmt.Fprintf(&buf, " canselect") } if cas.panic { fmt.Fprintf(&buf, " panic") } fmt.Fprintf(&buf, "\n") } fmt.Fprintf(&buf, "}") return buf.String() } type two [2]uintptr // Difficult test for function call because of // implicit padding between arguments. func dummy(b byte, c int, d byte, e two, f byte, g float32, h byte) (i byte, j int, k byte, l two, m byte, n float32, o byte) { return b, c, d, e, f, g, h } func TestFunc(t *testing.T) { ret := ValueOf(dummy).Call([]Value{ ValueOf(byte(10)), ValueOf(20), ValueOf(byte(30)), ValueOf(two{40, 50}), ValueOf(byte(60)), ValueOf(float32(70)), ValueOf(byte(80)), }) if len(ret) != 7 { t.Fatalf("Call returned %d values, want 7", len(ret)) } i := byte(ret[0].Uint()) j := int(ret[1].Int()) k := byte(ret[2].Uint()) l := ret[3].Interface().(two) m := byte(ret[4].Uint()) n := float32(ret[5].Float()) o := byte(ret[6].Uint()) if i != 10 || j != 20 || k != 30 || l != (two{40, 50}) || m != 60 || n != 70 || o != 80 { t.Errorf("Call returned %d, %d, %d, %v, %d, %g, %d; want 10, 20, 30, [40, 50], 60, 70, 80", i, j, k, l, m, n, o) } for i, v := range ret { if v.CanAddr() { t.Errorf("result %d is addressable", i) } } } func TestCallConvert(t *testing.T) { v := ValueOf(new(io.ReadWriter)).Elem() f := ValueOf(func(r io.Reader) io.Reader { return r }) out := f.Call([]Value{v}) if len(out) != 1 || out[0].Type() != TypeOf(new(io.Reader)).Elem() || !out[0].IsNil() { t.Errorf("expected [nil], got %v", out) } } type emptyStruct struct{} type nonEmptyStruct struct { member int } func returnEmpty() emptyStruct { return emptyStruct{} } func takesEmpty(e emptyStruct) { } func returnNonEmpty(i int) nonEmptyStruct { return nonEmptyStruct{member: i} } func takesNonEmpty(n nonEmptyStruct) int { return n.member } func TestCallWithStruct(t *testing.T) { r := ValueOf(returnEmpty).Call(nil) if len(r) != 1 || r[0].Type() != TypeOf(emptyStruct{}) { t.Errorf("returning empty struct returned %#v instead", r) } r = ValueOf(takesEmpty).Call([]Value{ValueOf(emptyStruct{})}) if len(r) != 0 { t.Errorf("takesEmpty returned values: %#v", r) } r = ValueOf(returnNonEmpty).Call([]Value{ValueOf(42)}) if len(r) != 1 || r[0].Type() != TypeOf(nonEmptyStruct{}) || r[0].Field(0).Int() != 42 { t.Errorf("returnNonEmpty returned %#v", r) } r = ValueOf(takesNonEmpty).Call([]Value{ValueOf(nonEmptyStruct{member: 42})}) if len(r) != 1 || r[0].Type() != TypeOf(1) || r[0].Int() != 42 { t.Errorf("takesNonEmpty returned %#v", r) } } func TestCallReturnsEmpty(t *testing.T) { // Issue 21717: past-the-end pointer write in Call with // nonzero-sized frame and zero-sized return value. runtime.GC() var finalized uint32 f := func() (emptyStruct, *[2]int64) { i := new([2]int64) // big enough to not be tinyalloc'd, so finalizer always runs when i dies runtime.SetFinalizer(i, func(*[2]int64) { atomic.StoreUint32(&finalized, 1) }) return emptyStruct{}, i } v := ValueOf(f).Call(nil)[0] // out[0] should not alias out[1]'s memory, so the finalizer should run. timeout := time.After(5 * time.Second) for atomic.LoadUint32(&finalized) == 0 { select { case <-timeout: t.Fatal("finalizer did not run") default: } runtime.Gosched() runtime.GC() } runtime.KeepAlive(v) } func TestMakeFunc(t *testing.T) { f := dummy fv := MakeFunc(TypeOf(f), func(in []Value) []Value { return in }) ValueOf(&f).Elem().Set(fv) // Call g with small arguments so that there is // something predictable (and different from the // correct results) in those positions on the stack. g := dummy g(1, 2, 3, two{4, 5}, 6, 7, 8) // Call constructed function f. i, j, k, l, m, n, o := f(10, 20, 30, two{40, 50}, 60, 70, 80) if i != 10 || j != 20 || k != 30 || l != (two{40, 50}) || m != 60 || n != 70 || o != 80 { t.Errorf("Call returned %d, %d, %d, %v, %d, %g, %d; want 10, 20, 30, [40, 50], 60, 70, 80", i, j, k, l, m, n, o) } } func TestMakeFuncInterface(t *testing.T) { fn := func(i int) int { return i } incr := func(in []Value) []Value { return []Value{ValueOf(int(in[0].Int() + 1))} } fv := MakeFunc(TypeOf(fn), incr) ValueOf(&fn).Elem().Set(fv) if r := fn(2); r != 3 { t.Errorf("Call returned %d, want 3", r) } if r := fv.Call([]Value{ValueOf(14)})[0].Int(); r != 15 { t.Errorf("Call returned %d, want 15", r) } if r := fv.Interface().(func(int) int)(26); r != 27 { t.Errorf("Call returned %d, want 27", r) } } func TestMakeFuncVariadic(t *testing.T) { // Test that variadic arguments are packed into a slice and passed as last arg fn := func(_ int, is ...int) []int { return nil } fv := MakeFunc(TypeOf(fn), func(in []Value) []Value { return in[1:2] }) ValueOf(&fn).Elem().Set(fv) r := fn(1, 2, 3) if r[0] != 2 || r[1] != 3 { t.Errorf("Call returned [%v, %v]; want 2, 3", r[0], r[1]) } r = fn(1, []int{2, 3}...) if r[0] != 2 || r[1] != 3 { t.Errorf("Call returned [%v, %v]; want 2, 3", r[0], r[1]) } r = fv.Call([]Value{ValueOf(1), ValueOf(2), ValueOf(3)})[0].Interface().([]int) if r[0] != 2 || r[1] != 3 { t.Errorf("Call returned [%v, %v]; want 2, 3", r[0], r[1]) } r = fv.CallSlice([]Value{ValueOf(1), ValueOf([]int{2, 3})})[0].Interface().([]int) if r[0] != 2 || r[1] != 3 { t.Errorf("Call returned [%v, %v]; want 2, 3", r[0], r[1]) } f := fv.Interface().(func(int, ...int) []int) r = f(1, 2, 3) if r[0] != 2 || r[1] != 3 { t.Errorf("Call returned [%v, %v]; want 2, 3", r[0], r[1]) } r = f(1, []int{2, 3}...) if r[0] != 2 || r[1] != 3 { t.Errorf("Call returned [%v, %v]; want 2, 3", r[0], r[1]) } } // Dummy type that implements io.WriteCloser type WC struct { } func (w *WC) Write(p []byte) (n int, err error) { return 0, nil } func (w *WC) Close() error { return nil } func TestMakeFuncValidReturnAssignments(t *testing.T) { // reflect.Values returned from the wrapped function should be assignment-converted // to the types returned by the result of MakeFunc. // Concrete types should be promotable to interfaces they implement. var f func() error f = MakeFunc(TypeOf(f), func([]Value) []Value { return []Value{ValueOf(io.EOF)} }).Interface().(func() error) f() // Super-interfaces should be promotable to simpler interfaces. var g func() io.Writer g = MakeFunc(TypeOf(g), func([]Value) []Value { var w io.WriteCloser = &WC{} return []Value{ValueOf(&w).Elem()} }).Interface().(func() io.Writer) g() // Channels should be promotable to directional channels. var h func() <-chan int h = MakeFunc(TypeOf(h), func([]Value) []Value { return []Value{ValueOf(make(chan int))} }).Interface().(func() <-chan int) h() // Unnamed types should be promotable to named types. type T struct{ a, b, c int } var i func() T i = MakeFunc(TypeOf(i), func([]Value) []Value { return []Value{ValueOf(struct{ a, b, c int }{a: 1, b: 2, c: 3})} }).Interface().(func() T) i() } func TestMakeFuncInvalidReturnAssignments(t *testing.T) { // Type doesn't implement the required interface. shouldPanic("", func() { var f func() error f = MakeFunc(TypeOf(f), func([]Value) []Value { return []Value{ValueOf(int(7))} }).Interface().(func() error) f() }) // Assigning to an interface with additional methods. shouldPanic("", func() { var f func() io.ReadWriteCloser f = MakeFunc(TypeOf(f), func([]Value) []Value { var w io.WriteCloser = &WC{} return []Value{ValueOf(&w).Elem()} }).Interface().(func() io.ReadWriteCloser) f() }) // Directional channels can't be assigned to bidirectional ones. shouldPanic("", func() { var f func() chan int f = MakeFunc(TypeOf(f), func([]Value) []Value { var c <-chan int = make(chan int) return []Value{ValueOf(c)} }).Interface().(func() chan int) f() }) // Two named types which are otherwise identical. shouldPanic("", func() { type T struct{ a, b, c int } type U struct{ a, b, c int } var f func() T f = MakeFunc(TypeOf(f), func([]Value) []Value { return []Value{ValueOf(U{a: 1, b: 2, c: 3})} }).Interface().(func() T) f() }) } type Point struct { x, y int } // This will be index 0. func (p Point) AnotherMethod(scale int) int { return -1 } // This will be index 1. func (p Point) Dist(scale int) int { //println("Point.Dist", p.x, p.y, scale) return p.x*p.x*scale + p.y*p.y*scale } // This will be index 2. func (p Point) GCMethod(k int) int { runtime.GC() return k + p.x } // This will be index 3. func (p Point) NoArgs() { // Exercise no-argument/no-result paths. } // This will be index 4. func (p Point) TotalDist(points ...Point) int { tot := 0 for _, q := range points { dx := q.x - p.x dy := q.y - p.y tot += dx*dx + dy*dy // Should call Sqrt, but it's just a test. } return tot } // This will be index 5. func (p *Point) Int64Method(x int64) int64 { return x } // This will be index 6. func (p *Point) Int32Method(x int32) int32 { return x } func TestMethod(t *testing.T) { // Non-curried method of type. p := Point{3, 4} i := TypeOf(p).Method(1).Func.Call([]Value{ValueOf(p), ValueOf(10)})[0].Int() if i != 250 { t.Errorf("Type Method returned %d; want 250", i) } m, ok := TypeOf(p).MethodByName("Dist") if !ok { t.Fatalf("method by name failed") } i = m.Func.Call([]Value{ValueOf(p), ValueOf(11)})[0].Int() if i != 275 { t.Errorf("Type MethodByName returned %d; want 275", i) } m, ok = TypeOf(p).MethodByName("NoArgs") if !ok { t.Fatalf("method by name failed") } n := len(m.Func.Call([]Value{ValueOf(p)})) if n != 0 { t.Errorf("NoArgs returned %d values; want 0", n) } i = TypeOf(&p).Method(1).Func.Call([]Value{ValueOf(&p), ValueOf(12)})[0].Int() if i != 300 { t.Errorf("Pointer Type Method returned %d; want 300", i) } m, ok = TypeOf(&p).MethodByName("Dist") if !ok { t.Fatalf("ptr method by name failed") } i = m.Func.Call([]Value{ValueOf(&p), ValueOf(13)})[0].Int() if i != 325 { t.Errorf("Pointer Type MethodByName returned %d; want 325", i) } m, ok = TypeOf(&p).MethodByName("NoArgs") if !ok { t.Fatalf("method by name failed") } n = len(m.Func.Call([]Value{ValueOf(&p)})) if n != 0 { t.Errorf("NoArgs returned %d values; want 0", n) } _, ok = TypeOf(&p).MethodByName("AA") if ok { t.Errorf(`MethodByName("AA") should have failed`) } _, ok = TypeOf(&p).MethodByName("ZZ") if ok { t.Errorf(`MethodByName("ZZ") should have failed`) } // Curried method of value. tfunc := TypeOf((func(int) int)(nil)) v := ValueOf(p).Method(1) if tt := v.Type(); tt != tfunc { t.Errorf("Value Method Type is %s; want %s", tt, tfunc) } i = v.Call([]Value{ValueOf(14)})[0].Int() if i != 350 { t.Errorf("Value Method returned %d; want 350", i) } v = ValueOf(p).MethodByName("Dist") if tt := v.Type(); tt != tfunc { t.Errorf("Value MethodByName Type is %s; want %s", tt, tfunc) } i = v.Call([]Value{ValueOf(15)})[0].Int() if i != 375 { t.Errorf("Value MethodByName returned %d; want 375", i) } v = ValueOf(p).MethodByName("NoArgs") v.Call(nil) // Curried method of pointer. v = ValueOf(&p).Method(1) if tt := v.Type(); tt != tfunc { t.Errorf("Pointer Value Method Type is %s; want %s", tt, tfunc) } i = v.Call([]Value{ValueOf(16)})[0].Int() if i != 400 { t.Errorf("Pointer Value Method returned %d; want 400", i) } v = ValueOf(&p).MethodByName("Dist") if tt := v.Type(); tt != tfunc { t.Errorf("Pointer Value MethodByName Type is %s; want %s", tt, tfunc) } i = v.Call([]Value{ValueOf(17)})[0].Int() if i != 425 { t.Errorf("Pointer Value MethodByName returned %d; want 425", i) } v = ValueOf(&p).MethodByName("NoArgs") v.Call(nil) // Curried method of interface value. // Have to wrap interface value in a struct to get at it. // Passing it to ValueOf directly would // access the underlying Point, not the interface. var x interface { Dist(int) int } = p pv := ValueOf(&x).Elem() v = pv.Method(0) if tt := v.Type(); tt != tfunc { t.Errorf("Interface Method Type is %s; want %s", tt, tfunc) } i = v.Call([]Value{ValueOf(18)})[0].Int() if i != 450 { t.Errorf("Interface Method returned %d; want 450", i) } v = pv.MethodByName("Dist") if tt := v.Type(); tt != tfunc { t.Errorf("Interface MethodByName Type is %s; want %s", tt, tfunc) } i = v.Call([]Value{ValueOf(19)})[0].Int() if i != 475 { t.Errorf("Interface MethodByName returned %d; want 475", i) } } func TestMethodValue(t *testing.T) { p := Point{3, 4} var i int64 // Check that method value have the same underlying code pointers. if p1, p2 := ValueOf(Point{1, 1}).Method(1), ValueOf(Point{2, 2}).Method(1); p1.Pointer() != p2.Pointer() { t.Errorf("methodValueCall mismatched: %v - %v", p1, p2) } // Curried method of value. tfunc := TypeOf((func(int) int)(nil)) v := ValueOf(p).Method(1) if tt := v.Type(); tt != tfunc { t.Errorf("Value Method Type is %s; want %s", tt, tfunc) } i = ValueOf(v.Interface()).Call([]Value{ValueOf(10)})[0].Int() if i != 250 { t.Errorf("Value Method returned %d; want 250", i) } v = ValueOf(p).MethodByName("Dist") if tt := v.Type(); tt != tfunc { t.Errorf("Value MethodByName Type is %s; want %s", tt, tfunc) } i = ValueOf(v.Interface()).Call([]Value{ValueOf(11)})[0].Int() if i != 275 { t.Errorf("Value MethodByName returned %d; want 275", i) } v = ValueOf(p).MethodByName("NoArgs") ValueOf(v.Interface()).Call(nil) v.Interface().(func())() // Curried method of pointer. v = ValueOf(&p).Method(1) if tt := v.Type(); tt != tfunc { t.Errorf("Pointer Value Method Type is %s; want %s", tt, tfunc) } i = ValueOf(v.Interface()).Call([]Value{ValueOf(12)})[0].Int() if i != 300 { t.Errorf("Pointer Value Method returned %d; want 300", i) } v = ValueOf(&p).MethodByName("Dist") if tt := v.Type(); tt != tfunc { t.Errorf("Pointer Value MethodByName Type is %s; want %s", tt, tfunc) } i = ValueOf(v.Interface()).Call([]Value{ValueOf(13)})[0].Int() if i != 325 { t.Errorf("Pointer Value MethodByName returned %d; want 325", i) } v = ValueOf(&p).MethodByName("NoArgs") ValueOf(v.Interface()).Call(nil) v.Interface().(func())() // Curried method of pointer to pointer. pp := &p v = ValueOf(&pp).Elem().Method(1) if tt := v.Type(); tt != tfunc { t.Errorf("Pointer Pointer Value Method Type is %s; want %s", tt, tfunc) } i = ValueOf(v.Interface()).Call([]Value{ValueOf(14)})[0].Int() if i != 350 { t.Errorf("Pointer Pointer Value Method returned %d; want 350", i) } v = ValueOf(&pp).Elem().MethodByName("Dist") if tt := v.Type(); tt != tfunc { t.Errorf("Pointer Pointer Value MethodByName Type is %s; want %s", tt, tfunc) } i = ValueOf(v.Interface()).Call([]Value{ValueOf(15)})[0].Int() if i != 375 { t.Errorf("Pointer Pointer Value MethodByName returned %d; want 375", i) } // Curried method of interface value. // Have to wrap interface value in a struct to get at it. // Passing it to ValueOf directly would // access the underlying Point, not the interface. var s = struct { X interface { Dist(int) int } }{p} pv := ValueOf(s).Field(0) v = pv.Method(0) if tt := v.Type(); tt != tfunc { t.Errorf("Interface Method Type is %s; want %s", tt, tfunc) } i = ValueOf(v.Interface()).Call([]Value{ValueOf(16)})[0].Int() if i != 400 { t.Errorf("Interface Method returned %d; want 400", i) } v = pv.MethodByName("Dist") if tt := v.Type(); tt != tfunc { t.Errorf("Interface MethodByName Type is %s; want %s", tt, tfunc) } i = ValueOf(v.Interface()).Call([]Value{ValueOf(17)})[0].Int() if i != 425 { t.Errorf("Interface MethodByName returned %d; want 425", i) } // For issue #33628: method args are not stored at the right offset // on amd64p32. m64 := ValueOf(&p).MethodByName("Int64Method").Interface().(func(int64) int64) if x := m64(123); x != 123 { t.Errorf("Int64Method returned %d; want 123", x) } m32 := ValueOf(&p).MethodByName("Int32Method").Interface().(func(int32) int32) if x := m32(456); x != 456 { t.Errorf("Int32Method returned %d; want 456", x) } } func TestVariadicMethodValue(t *testing.T) { p := Point{3, 4} points := []Point{{20, 21}, {22, 23}, {24, 25}} want := int64(p.TotalDist(points[0], points[1], points[2])) // Variadic method of type. tfunc := TypeOf((func(Point, ...Point) int)(nil)) if tt := TypeOf(p).Method(4).Type; tt != tfunc { t.Errorf("Variadic Method Type from TypeOf is %s; want %s", tt, tfunc) } // Curried method of value. tfunc = TypeOf((func(...Point) int)(nil)) v := ValueOf(p).Method(4) if tt := v.Type(); tt != tfunc { t.Errorf("Variadic Method Type is %s; want %s", tt, tfunc) } i := ValueOf(v.Interface()).Call([]Value{ValueOf(points[0]), ValueOf(points[1]), ValueOf(points[2])})[0].Int() if i != want { t.Errorf("Variadic Method returned %d; want %d", i, want) } i = ValueOf(v.Interface()).CallSlice([]Value{ValueOf(points)})[0].Int() if i != want { t.Errorf("Variadic Method CallSlice returned %d; want %d", i, want) } f := v.Interface().(func(...Point) int) i = int64(f(points[0], points[1], points[2])) if i != want { t.Errorf("Variadic Method Interface returned %d; want %d", i, want) } i = int64(f(points...)) if i != want { t.Errorf("Variadic Method Interface Slice returned %d; want %d", i, want) } } type DirectIfaceT struct { p *int } func (d DirectIfaceT) M() int { return *d.p } func TestDirectIfaceMethod(t *testing.T) { x := 42 v := DirectIfaceT{&x} typ := TypeOf(v) m, ok := typ.MethodByName("M") if !ok { t.Fatalf("cannot find method M") } in := []Value{ValueOf(v)} out := m.Func.Call(in) if got := out[0].Int(); got != 42 { t.Errorf("Call with value receiver got %d, want 42", got) } pv := &v typ = TypeOf(pv) m, ok = typ.MethodByName("M") if !ok { t.Fatalf("cannot find method M") } in = []Value{ValueOf(pv)} out = m.Func.Call(in) if got := out[0].Int(); got != 42 { t.Errorf("Call with pointer receiver got %d, want 42", got) } } // Reflect version of $GOROOT/test/method5.go // Concrete types implementing M method. // Smaller than a word, word-sized, larger than a word. // Value and pointer receivers. type Tinter interface { M(int, byte) (byte, int) } type Tsmallv byte func (v Tsmallv) M(x int, b byte) (byte, int) { return b, x + int(v) } type Tsmallp byte func (p *Tsmallp) M(x int, b byte) (byte, int) { return b, x + int(*p) } type Twordv uintptr func (v Twordv) M(x int, b byte) (byte, int) { return b, x + int(v) } type Twordp uintptr func (p *Twordp) M(x int, b byte) (byte, int) { return b, x + int(*p) } type Tbigv [2]uintptr func (v Tbigv) M(x int, b byte) (byte, int) { return b, x + int(v[0]) + int(v[1]) } type Tbigp [2]uintptr func (p *Tbigp) M(x int, b byte) (byte, int) { return b, x + int(p[0]) + int(p[1]) } type tinter interface { m(int, byte) (byte, int) } // Embedding via pointer. type Tm1 struct { Tm2 } type Tm2 struct { *Tm3 } type Tm3 struct { *Tm4 } type Tm4 struct { } func (t4 Tm4) M(x int, b byte) (byte, int) { return b, x + 40 } func TestMethod5(t *testing.T) { CheckF := func(name string, f func(int, byte) (byte, int), inc int) { b, x := f(1000, 99) if b != 99 || x != 1000+inc { t.Errorf("%s(1000, 99) = %v, %v, want 99, %v", name, b, x, 1000+inc) } } CheckV := func(name string, i Value, inc int) { bx := i.Method(0).Call([]Value{ValueOf(1000), ValueOf(byte(99))}) b := bx[0].Interface() x := bx[1].Interface() if b != byte(99) || x != 1000+inc { t.Errorf("direct %s.M(1000, 99) = %v, %v, want 99, %v", name, b, x, 1000+inc) } CheckF(name+".M", i.Method(0).Interface().(func(int, byte) (byte, int)), inc) } var TinterType = TypeOf(new(Tinter)).Elem() CheckI := func(name string, i any, inc int) { v := ValueOf(i) CheckV(name, v, inc) CheckV("(i="+name+")", v.Convert(TinterType), inc) } sv := Tsmallv(1) CheckI("sv", sv, 1) CheckI("&sv", &sv, 1) sp := Tsmallp(2) CheckI("&sp", &sp, 2) wv := Twordv(3) CheckI("wv", wv, 3) CheckI("&wv", &wv, 3) wp := Twordp(4) CheckI("&wp", &wp, 4) bv := Tbigv([2]uintptr{5, 6}) CheckI("bv", bv, 11) CheckI("&bv", &bv, 11) bp := Tbigp([2]uintptr{7, 8}) CheckI("&bp", &bp, 15) t4 := Tm4{} t3 := Tm3{&t4} t2 := Tm2{&t3} t1 := Tm1{t2} CheckI("t4", t4, 40) CheckI("&t4", &t4, 40) CheckI("t3", t3, 40) CheckI("&t3", &t3, 40) CheckI("t2", t2, 40) CheckI("&t2", &t2, 40) CheckI("t1", t1, 40) CheckI("&t1", &t1, 40) var tnil Tinter vnil := ValueOf(&tnil).Elem() shouldPanic("Method", func() { vnil.Method(0) }) } func TestInterfaceSet(t *testing.T) { p := &Point{3, 4} var s struct { I any P interface { Dist(int) int } } sv := ValueOf(&s).Elem() sv.Field(0).Set(ValueOf(p)) if q := s.I.(*Point); q != p { t.Errorf("i: have %p want %p", q, p) } pv := sv.Field(1) pv.Set(ValueOf(p)) if q := s.P.(*Point); q != p { t.Errorf("i: have %p want %p", q, p) } i := pv.Method(0).Call([]Value{ValueOf(10)})[0].Int() if i != 250 { t.Errorf("Interface Method returned %d; want 250", i) } } type T1 struct { a string int } func TestAnonymousFields(t *testing.T) { var field StructField var ok bool var t1 T1 type1 := TypeOf(t1) if field, ok = type1.FieldByName("int"); !ok { t.Fatal("no field 'int'") } if field.Index[0] != 1 { t.Error("field index should be 1; is", field.Index) } } type FTest struct { s any name string index []int value int } type D1 struct { d int } type D2 struct { d int } type S0 struct { A, B, C int D1 D2 } type S1 struct { B int S0 } type S2 struct { A int *S1 } type S1x struct { S1 } type S1y struct { S1 } type S3 struct { S1x S2 D, E int *S1y } type S4 struct { *S4 A int } // The X in S6 and S7 annihilate, but they also block the X in S8.S9. type S5 struct { S6 S7 S8 } type S6 struct { X int } type S7 S6 type S8 struct { S9 } type S9 struct { X int Y int } // The X in S11.S6 and S12.S6 annihilate, but they also block the X in S13.S8.S9. type S10 struct { S11 S12 S13 } type S11 struct { S6 } type S12 struct { S6 } type S13 struct { S8 } // The X in S15.S11.S1 and S16.S11.S1 annihilate. type S14 struct { S15 S16 } type S15 struct { S11 } type S16 struct { S11 } var fieldTests = []FTest{ {struct{}{}, "", nil, 0}, {struct{}{}, "Foo", nil, 0}, {S0{A: 'a'}, "A", []int{0}, 'a'}, {S0{}, "D", nil, 0}, {S1{S0: S0{A: 'a'}}, "A", []int{1, 0}, 'a'}, {S1{B: 'b'}, "B", []int{0}, 'b'}, {S1{}, "S0", []int{1}, 0}, {S1{S0: S0{C: 'c'}}, "C", []int{1, 2}, 'c'}, {S2{A: 'a'}, "A", []int{0}, 'a'}, {S2{}, "S1", []int{1}, 0}, {S2{S1: &S1{B: 'b'}}, "B", []int{1, 0}, 'b'}, {S2{S1: &S1{S0: S0{C: 'c'}}}, "C", []int{1, 1, 2}, 'c'}, {S2{}, "D", nil, 0}, {S3{}, "S1", nil, 0}, {S3{S2: S2{A: 'a'}}, "A", []int{1, 0}, 'a'}, {S3{}, "B", nil, 0}, {S3{D: 'd'}, "D", []int{2}, 0}, {S3{E: 'e'}, "E", []int{3}, 'e'}, {S4{A: 'a'}, "A", []int{1}, 'a'}, {S4{}, "B", nil, 0}, {S5{}, "X", nil, 0}, {S5{}, "Y", []int{2, 0, 1}, 0}, {S10{}, "X", nil, 0}, {S10{}, "Y", []int{2, 0, 0, 1}, 0}, {S14{}, "X", nil, 0}, } func TestFieldByIndex(t *testing.T) { for _, test := range fieldTests { s := TypeOf(test.s) f := s.FieldByIndex(test.index) if f.Name != "" { if test.index != nil { if f.Name != test.name { t.Errorf("%s.%s found; want %s", s.Name(), f.Name, test.name) } } else { t.Errorf("%s.%s found", s.Name(), f.Name) } } else if len(test.index) > 0 { t.Errorf("%s.%s not found", s.Name(), test.name) } if test.value != 0 { v := ValueOf(test.s).FieldByIndex(test.index) if v.IsValid() { if x, ok := v.Interface().(int); ok { if x != test.value { t.Errorf("%s%v is %d; want %d", s.Name(), test.index, x, test.value) } } else { t.Errorf("%s%v value not an int", s.Name(), test.index) } } else { t.Errorf("%s%v value not found", s.Name(), test.index) } } } } func TestFieldByName(t *testing.T) { for _, test := range fieldTests { s := TypeOf(test.s) f, found := s.FieldByName(test.name) if found { if test.index != nil { // Verify field depth and index. if len(f.Index) != len(test.index) { t.Errorf("%s.%s depth %d; want %d: %v vs %v", s.Name(), test.name, len(f.Index), len(test.index), f.Index, test.index) } else { for i, x := range f.Index { if x != test.index[i] { t.Errorf("%s.%s.Index[%d] is %d; want %d", s.Name(), test.name, i, x, test.index[i]) } } } } else { t.Errorf("%s.%s found", s.Name(), f.Name) } } else if len(test.index) > 0 { t.Errorf("%s.%s not found", s.Name(), test.name) } if test.value != 0 { v := ValueOf(test.s).FieldByName(test.name) if v.IsValid() { if x, ok := v.Interface().(int); ok { if x != test.value { t.Errorf("%s.%s is %d; want %d", s.Name(), test.name, x, test.value) } } else { t.Errorf("%s.%s value not an int", s.Name(), test.name) } } else { t.Errorf("%s.%s value not found", s.Name(), test.name) } } } } func TestImportPath(t *testing.T) { tests := []struct { t Type path string }{ {TypeOf(&base64.Encoding{}).Elem(), "encoding/base64"}, {TypeOf(int(0)), ""}, {TypeOf(int8(0)), ""}, {TypeOf(int16(0)), ""}, {TypeOf(int32(0)), ""}, {TypeOf(int64(0)), ""}, {TypeOf(uint(0)), ""}, {TypeOf(uint8(0)), ""}, {TypeOf(uint16(0)), ""}, {TypeOf(uint32(0)), ""}, {TypeOf(uint64(0)), ""}, {TypeOf(uintptr(0)), ""}, {TypeOf(float32(0)), ""}, {TypeOf(float64(0)), ""}, {TypeOf(complex64(0)), ""}, {TypeOf(complex128(0)), ""}, {TypeOf(byte(0)), ""}, {TypeOf(rune(0)), ""}, {TypeOf([]byte(nil)), ""}, {TypeOf([]rune(nil)), ""}, {TypeOf(string("")), ""}, {TypeOf((*any)(nil)).Elem(), ""}, {TypeOf((*byte)(nil)), ""}, {TypeOf((*rune)(nil)), ""}, {TypeOf((*int64)(nil)), ""}, {TypeOf(map[string]int{}), ""}, {TypeOf((*error)(nil)).Elem(), ""}, {TypeOf((*Point)(nil)), ""}, {TypeOf((*Point)(nil)).Elem(), "reflect_test"}, } for _, test := range tests { if path := test.t.PkgPath(); path != test.path { t.Errorf("%v.PkgPath() = %q, want %q", test.t, path, test.path) } } } func TestFieldPkgPath(t *testing.T) { type x int typ := TypeOf(struct { Exported string unexported string OtherPkgFields int // issue 21702 *x // issue 21122 }{}) type pkgpathTest struct { index []int pkgPath string embedded bool exported bool } checkPkgPath := func(name string, s []pkgpathTest) { for _, test := range s { f := typ.FieldByIndex(test.index) if got, want := f.PkgPath, test.pkgPath; got != want { t.Errorf("%s: Field(%d).PkgPath = %q, want %q", name, test.index, got, want) } if got, want := f.Anonymous, test.embedded; got != want { t.Errorf("%s: Field(%d).Anonymous = %v, want %v", name, test.index, got, want) } if got, want := f.IsExported(), test.exported; got != want { t.Errorf("%s: Field(%d).IsExported = %v, want %v", name, test.index, got, want) } } } checkPkgPath("testStruct", []pkgpathTest{ {[]int{0}, "", false, true}, // Exported {[]int{1}, "reflect_test", false, false}, // unexported {[]int{2}, "", true, true}, // OtherPkgFields {[]int{2, 0}, "", false, true}, // OtherExported {[]int{2, 1}, "reflect", false, false}, // otherUnexported {[]int{3}, "reflect_test", true, false}, // int {[]int{4}, "reflect_test", true, false}, // *x }) type localOtherPkgFields OtherPkgFields typ = TypeOf(localOtherPkgFields{}) checkPkgPath("localOtherPkgFields", []pkgpathTest{ {[]int{0}, "", false, true}, // OtherExported {[]int{1}, "reflect", false, false}, // otherUnexported }) } func TestMethodPkgPath(t *testing.T) { type I interface { x() X() } typ := TypeOf((*interface { I y() Y() })(nil)).Elem() tests := []struct { name string pkgPath string exported bool }{ {"X", "", true}, {"Y", "", true}, {"x", "reflect_test", false}, {"y", "reflect_test", false}, } for _, test := range tests { m, _ := typ.MethodByName(test.name) if got, want := m.PkgPath, test.pkgPath; got != want { t.Errorf("MethodByName(%q).PkgPath = %q, want %q", test.name, got, want) } if got, want := m.IsExported(), test.exported; got != want { t.Errorf("MethodByName(%q).IsExported = %v, want %v", test.name, got, want) } } } func TestVariadicType(t *testing.T) { // Test example from Type documentation. var f func(x int, y ...float64) typ := TypeOf(f) if typ.NumIn() == 2 && typ.In(0) == TypeOf(int(0)) { sl := typ.In(1) if sl.Kind() == Slice { if sl.Elem() == TypeOf(0.0) { // ok return } } } // Failed t.Errorf("want NumIn() = 2, In(0) = int, In(1) = []float64") s := fmt.Sprintf("have NumIn() = %d", typ.NumIn()) for i := 0; i < typ.NumIn(); i++ { s += fmt.Sprintf(", In(%d) = %s", i, typ.In(i)) } t.Error(s) } type inner struct { x int } type outer struct { y int inner } func (*inner) M() {} func (*outer) M() {} func TestNestedMethods(t *testing.T) { typ := TypeOf((*outer)(nil)) if typ.NumMethod() != 1 || typ.Method(0).Func.UnsafePointer() != ValueOf((*outer).M).UnsafePointer() { t.Errorf("Wrong method table for outer: (M=%p)", (*outer).M) for i := 0; i < typ.NumMethod(); i++ { m := typ.Method(i) t.Errorf("\t%d: %s %p\n", i, m.Name, m.Func.UnsafePointer()) } } } type unexp struct{} func (*unexp) f() (int32, int8) { return 7, 7 } func (*unexp) g() (int64, int8) { return 8, 8 } type unexpI interface { f() (int32, int8) } func TestUnexportedMethods(t *testing.T) { typ := TypeOf(new(unexp)) if got := typ.NumMethod(); got != 0 { t.Errorf("NumMethod=%d, want 0 satisfied methods", got) } typ = TypeOf((*unexpI)(nil)) if got := typ.Elem().NumMethod(); got != 1 { t.Errorf("NumMethod=%d, want 1 satisfied methods", got) } } type InnerInt struct { X int } type OuterInt struct { Y int InnerInt } func (i *InnerInt) M() int { return i.X } func TestEmbeddedMethods(t *testing.T) { typ := TypeOf((*OuterInt)(nil)) if typ.NumMethod() != 1 || typ.Method(0).Func.UnsafePointer() != ValueOf((*OuterInt).M).UnsafePointer() { t.Errorf("Wrong method table for OuterInt: (m=%p)", (*OuterInt).M) for i := 0; i < typ.NumMethod(); i++ { m := typ.Method(i) t.Errorf("\t%d: %s %p\n", i, m.Name, m.Func.UnsafePointer()) } } i := &InnerInt{3} if v := ValueOf(i).Method(0).Call(nil)[0].Int(); v != 3 { t.Errorf("i.M() = %d, want 3", v) } o := &OuterInt{1, InnerInt{2}} if v := ValueOf(o).Method(0).Call(nil)[0].Int(); v != 2 { t.Errorf("i.M() = %d, want 2", v) } f := (*OuterInt).M if v := f(o); v != 2 { t.Errorf("f(o) = %d, want 2", v) } } type FuncDDD func(...any) error func (f FuncDDD) M() {} func TestNumMethodOnDDD(t *testing.T) { rv := ValueOf((FuncDDD)(nil)) if n := rv.NumMethod(); n != 1 { t.Fatalf("NumMethod()=%d, want 1", n) } } func TestPtrTo(t *testing.T) { // This block of code means that the ptrToThis field of the // reflect data for *unsafe.Pointer is non zero, see // https://golang.org/issue/19003 var x unsafe.Pointer var y = &x var z = &y var i int typ := TypeOf(z) for i = 0; i < 100; i++ { typ = PointerTo(typ) } for i = 0; i < 100; i++ { typ = typ.Elem() } if typ != TypeOf(z) { t.Errorf("after 100 PointerTo and Elem, have %s, want %s", typ, TypeOf(z)) } } func TestPtrToGC(t *testing.T) { type T *uintptr tt := TypeOf(T(nil)) pt := PointerTo(tt) const n = 100 var x []any for i := 0; i < n; i++ { v := New(pt) p := new(*uintptr) *p = new(uintptr) **p = uintptr(i) v.Elem().Set(ValueOf(p).Convert(pt)) x = append(x, v.Interface()) } runtime.GC() for i, xi := range x { k := ValueOf(xi).Elem().Elem().Elem().Interface().(uintptr) if k != uintptr(i) { t.Errorf("lost x[%d] = %d, want %d", i, k, i) } } } func TestAddr(t *testing.T) { var p struct { X, Y int } v := ValueOf(&p) v = v.Elem() v = v.Addr() v = v.Elem() v = v.Field(0) v.SetInt(2) if p.X != 2 { t.Errorf("Addr.Elem.Set failed to set value") } // Again but take address of the ValueOf value. // Exercises generation of PtrTypes not present in the binary. q := &p v = ValueOf(&q).Elem() v = v.Addr() v = v.Elem() v = v.Elem() v = v.Addr() v = v.Elem() v = v.Field(0) v.SetInt(3) if p.X != 3 { t.Errorf("Addr.Elem.Set failed to set value") } // Starting without pointer we should get changed value // in interface. qq := p v = ValueOf(&qq).Elem() v0 := v v = v.Addr() v = v.Elem() v = v.Field(0) v.SetInt(4) if p.X != 3 { // should be unchanged from last time t.Errorf("somehow value Set changed original p") } p = v0.Interface().(struct { X, Y int }) if p.X != 4 { t.Errorf("Addr.Elem.Set valued to set value in top value") } // Verify that taking the address of a type gives us a pointer // which we can convert back using the usual interface // notation. var s struct { B *bool } ps := ValueOf(&s).Elem().Field(0).Addr().Interface() *(ps.(**bool)) = new(bool) if s.B == nil { t.Errorf("Addr.Interface direct assignment failed") } } func noAlloc(t *testing.T, n int, f func(int)) { if testing.Short() { t.Skip("skipping malloc count in short mode") } if runtime.GOMAXPROCS(0) > 1 { t.Skip("skipping; GOMAXPROCS>1") } i := -1 allocs := testing.AllocsPerRun(n, func() { f(i) i++ }) if allocs > 0 { t.Errorf("%d iterations: got %v mallocs, want 0", n, allocs) } } func TestAllocations(t *testing.T) { noAlloc(t, 100, func(j int) { var i any var v Value i = 42 + j v = ValueOf(i) if int(v.Int()) != 42+j { panic("wrong int") } }) noAlloc(t, 100, func(j int) { var i any var v Value i = [3]int{j, j, j} v = ValueOf(i) if v.Len() != 3 { panic("wrong length") } }) noAlloc(t, 100, func(j int) { var i any var v Value i = func(j int) int { return j } v = ValueOf(i) if v.Interface().(func(int) int)(j) != j { panic("wrong result") } }) } func TestSmallNegativeInt(t *testing.T) { i := int16(-1) v := ValueOf(i) if v.Int() != -1 { t.Errorf("int16(-1).Int() returned %v", v.Int()) } } func TestIndex(t *testing.T) { xs := []byte{1, 2, 3, 4, 5, 6, 7, 8} v := ValueOf(xs).Index(3).Interface().(byte) if v != xs[3] { t.Errorf("xs.Index(3) = %v; expected %v", v, xs[3]) } xa := [8]byte{10, 20, 30, 40, 50, 60, 70, 80} v = ValueOf(xa).Index(2).Interface().(byte) if v != xa[2] { t.Errorf("xa.Index(2) = %v; expected %v", v, xa[2]) } s := "0123456789" v = ValueOf(s).Index(3).Interface().(byte) if v != s[3] { t.Errorf("s.Index(3) = %v; expected %v", v, s[3]) } } func TestSlice(t *testing.T) { xs := []int{1, 2, 3, 4, 5, 6, 7, 8} v := ValueOf(xs).Slice(3, 5).Interface().([]int) if len(v) != 2 { t.Errorf("len(xs.Slice(3, 5)) = %d", len(v)) } if cap(v) != 5 { t.Errorf("cap(xs.Slice(3, 5)) = %d", cap(v)) } if !DeepEqual(v[0:5], xs[3:]) { t.Errorf("xs.Slice(3, 5)[0:5] = %v", v[0:5]) } xa := [8]int{10, 20, 30, 40, 50, 60, 70, 80} v = ValueOf(&xa).Elem().Slice(2, 5).Interface().([]int) if len(v) != 3 { t.Errorf("len(xa.Slice(2, 5)) = %d", len(v)) } if cap(v) != 6 { t.Errorf("cap(xa.Slice(2, 5)) = %d", cap(v)) } if !DeepEqual(v[0:6], xa[2:]) { t.Errorf("xs.Slice(2, 5)[0:6] = %v", v[0:6]) } s := "0123456789" vs := ValueOf(s).Slice(3, 5).Interface().(string) if vs != s[3:5] { t.Errorf("s.Slice(3, 5) = %q; expected %q", vs, s[3:5]) } rv := ValueOf(&xs).Elem() rv = rv.Slice(3, 4) ptr2 := rv.UnsafePointer() rv = rv.Slice(5, 5) ptr3 := rv.UnsafePointer() if ptr3 != ptr2 { t.Errorf("xs.Slice(3,4).Slice3(5,5).UnsafePointer() = %p, want %p", ptr3, ptr2) } } func TestSlice3(t *testing.T) { xs := []int{1, 2, 3, 4, 5, 6, 7, 8} v := ValueOf(xs).Slice3(3, 5, 7).Interface().([]int) if len(v) != 2 { t.Errorf("len(xs.Slice3(3, 5, 7)) = %d", len(v)) } if cap(v) != 4 { t.Errorf("cap(xs.Slice3(3, 5, 7)) = %d", cap(v)) } if !DeepEqual(v[0:4], xs[3:7:7]) { t.Errorf("xs.Slice3(3, 5, 7)[0:4] = %v", v[0:4]) } rv := ValueOf(&xs).Elem() shouldPanic("Slice3", func() { rv.Slice3(1, 2, 1) }) shouldPanic("Slice3", func() { rv.Slice3(1, 1, 11) }) shouldPanic("Slice3", func() { rv.Slice3(2, 2, 1) }) xa := [8]int{10, 20, 30, 40, 50, 60, 70, 80} v = ValueOf(&xa).Elem().Slice3(2, 5, 6).Interface().([]int) if len(v) != 3 { t.Errorf("len(xa.Slice(2, 5, 6)) = %d", len(v)) } if cap(v) != 4 { t.Errorf("cap(xa.Slice(2, 5, 6)) = %d", cap(v)) } if !DeepEqual(v[0:4], xa[2:6:6]) { t.Errorf("xs.Slice(2, 5, 6)[0:4] = %v", v[0:4]) } rv = ValueOf(&xa).Elem() shouldPanic("Slice3", func() { rv.Slice3(1, 2, 1) }) shouldPanic("Slice3", func() { rv.Slice3(1, 1, 11) }) shouldPanic("Slice3", func() { rv.Slice3(2, 2, 1) }) s := "hello world" rv = ValueOf(&s).Elem() shouldPanic("Slice3", func() { rv.Slice3(1, 2, 3) }) rv = ValueOf(&xs).Elem() rv = rv.Slice3(3, 5, 7) ptr2 := rv.UnsafePointer() rv = rv.Slice3(4, 4, 4) ptr3 := rv.UnsafePointer() if ptr3 != ptr2 { t.Errorf("xs.Slice3(3,5,7).Slice3(4,4,4).UnsafePointer() = %p, want %p", ptr3, ptr2) } } func TestSetLenCap(t *testing.T) { xs := []int{1, 2, 3, 4, 5, 6, 7, 8} xa := [8]int{10, 20, 30, 40, 50, 60, 70, 80} vs := ValueOf(&xs).Elem() shouldPanic("SetLen", func() { vs.SetLen(10) }) shouldPanic("SetCap", func() { vs.SetCap(10) }) shouldPanic("SetLen", func() { vs.SetLen(-1) }) shouldPanic("SetCap", func() { vs.SetCap(-1) }) shouldPanic("SetCap", func() { vs.SetCap(6) }) // smaller than len vs.SetLen(5) if len(xs) != 5 || cap(xs) != 8 { t.Errorf("after SetLen(5), len, cap = %d, %d, want 5, 8", len(xs), cap(xs)) } vs.SetCap(6) if len(xs) != 5 || cap(xs) != 6 { t.Errorf("after SetCap(6), len, cap = %d, %d, want 5, 6", len(xs), cap(xs)) } vs.SetCap(5) if len(xs) != 5 || cap(xs) != 5 { t.Errorf("after SetCap(5), len, cap = %d, %d, want 5, 5", len(xs), cap(xs)) } shouldPanic("SetCap", func() { vs.SetCap(4) }) // smaller than len shouldPanic("SetLen", func() { vs.SetLen(6) }) // bigger than cap va := ValueOf(&xa).Elem() shouldPanic("SetLen", func() { va.SetLen(8) }) shouldPanic("SetCap", func() { va.SetCap(8) }) } func TestVariadic(t *testing.T) { var b strings.Builder V := ValueOf b.Reset() V(fmt.Fprintf).Call([]Value{V(&b), V("%s, %d world"), V("hello"), V(42)}) if b.String() != "hello, 42 world" { t.Errorf("after Fprintf Call: %q != %q", b.String(), "hello 42 world") } b.Reset() V(fmt.Fprintf).CallSlice([]Value{V(&b), V("%s, %d world"), V([]any{"hello", 42})}) if b.String() != "hello, 42 world" { t.Errorf("after Fprintf CallSlice: %q != %q", b.String(), "hello 42 world") } } func TestFuncArg(t *testing.T) { f1 := func(i int, f func(int) int) int { return f(i) } f2 := func(i int) int { return i + 1 } r := ValueOf(f1).Call([]Value{ValueOf(100), ValueOf(f2)}) if r[0].Int() != 101 { t.Errorf("function returned %d, want 101", r[0].Int()) } } func TestStructArg(t *testing.T) { type padded struct { B string C int32 } var ( gotA padded gotB uint32 wantA = padded{"3", 4} wantB = uint32(5) ) f := func(a padded, b uint32) { gotA, gotB = a, b } ValueOf(f).Call([]Value{ValueOf(wantA), ValueOf(wantB)}) if gotA != wantA || gotB != wantB { t.Errorf("function called with (%v, %v), want (%v, %v)", gotA, gotB, wantA, wantB) } } var tagGetTests = []struct { Tag StructTag Key string Value string }{ {`protobuf:"PB(1,2)"`, `protobuf`, `PB(1,2)`}, {`protobuf:"PB(1,2)"`, `foo`, ``}, {`protobuf:"PB(1,2)"`, `rotobuf`, ``}, {`protobuf:"PB(1,2)" json:"name"`, `json`, `name`}, {`protobuf:"PB(1,2)" json:"name"`, `protobuf`, `PB(1,2)`}, {`k0:"values contain spaces" k1:"and\ttabs"`, "k0", "values contain spaces"}, {`k0:"values contain spaces" k1:"and\ttabs"`, "k1", "and\ttabs"}, } func TestTagGet(t *testing.T) { for _, tt := range tagGetTests { if v := tt.Tag.Get(tt.Key); v != tt.Value { t.Errorf("StructTag(%#q).Get(%#q) = %#q, want %#q", tt.Tag, tt.Key, v, tt.Value) } } } func TestBytes(t *testing.T) { shouldPanic("on int Value", func() { ValueOf(0).Bytes() }) shouldPanic("of non-byte slice", func() { ValueOf([]string{}).Bytes() }) type S []byte x := S{1, 2, 3, 4} y := ValueOf(x).Bytes() if !bytes.Equal(x, y) { t.Fatalf("ValueOf(%v).Bytes() = %v", x, y) } if &x[0] != &y[0] { t.Errorf("ValueOf(%p).Bytes() = %p", &x[0], &y[0]) } type A [4]byte a := A{1, 2, 3, 4} shouldPanic("unaddressable", func() { ValueOf(a).Bytes() }) shouldPanic("on ptr Value", func() { ValueOf(&a).Bytes() }) b := ValueOf(&a).Elem().Bytes() if !bytes.Equal(a[:], y) { t.Fatalf("ValueOf(%v).Bytes() = %v", a, b) } if &a[0] != &b[0] { t.Errorf("ValueOf(%p).Bytes() = %p", &a[0], &b[0]) } // Per issue #24746, it was decided that Bytes can be called on byte slices // that normally cannot be converted from per Go language semantics. type B byte type SB []B type AB [4]B ValueOf([]B{1, 2, 3, 4}).Bytes() // should not panic ValueOf(new([4]B)).Elem().Bytes() // should not panic ValueOf(SB{1, 2, 3, 4}).Bytes() // should not panic ValueOf(new(AB)).Elem().Bytes() // should not panic } func TestSetBytes(t *testing.T) { type B []byte var x B y := []byte{1, 2, 3, 4} ValueOf(&x).Elem().SetBytes(y) if !bytes.Equal(x, y) { t.Fatalf("ValueOf(%v).Bytes() = %v", x, y) } if &x[0] != &y[0] { t.Errorf("ValueOf(%p).Bytes() = %p", &x[0], &y[0]) } } type Private struct { x int y **int Z int } func (p *Private) m() { } type private struct { Z int z int S string A [1]Private T []Private } func (p *private) P() { } type Public struct { X int Y **int private } func (p *Public) M() { } func TestUnexported(t *testing.T) { var pub Public pub.S = "S" pub.T = pub.A[:] v := ValueOf(&pub) isValid(v.Elem().Field(0)) isValid(v.Elem().Field(1)) isValid(v.Elem().Field(2)) isValid(v.Elem().FieldByName("X")) isValid(v.Elem().FieldByName("Y")) isValid(v.Elem().FieldByName("Z")) isValid(v.Type().Method(0).Func) m, _ := v.Type().MethodByName("M") isValid(m.Func) m, _ = v.Type().MethodByName("P") isValid(m.Func) isNonNil(v.Elem().Field(0).Interface()) isNonNil(v.Elem().Field(1).Interface()) isNonNil(v.Elem().Field(2).Field(2).Index(0)) isNonNil(v.Elem().FieldByName("X").Interface()) isNonNil(v.Elem().FieldByName("Y").Interface()) isNonNil(v.Elem().FieldByName("Z").Interface()) isNonNil(v.Elem().FieldByName("S").Index(0).Interface()) isNonNil(v.Type().Method(0).Func.Interface()) m, _ = v.Type().MethodByName("P") isNonNil(m.Func.Interface()) var priv Private v = ValueOf(&priv) isValid(v.Elem().Field(0)) isValid(v.Elem().Field(1)) isValid(v.Elem().FieldByName("x")) isValid(v.Elem().FieldByName("y")) shouldPanic("Interface", func() { v.Elem().Field(0).Interface() }) shouldPanic("Interface", func() { v.Elem().Field(1).Interface() }) shouldPanic("Interface", func() { v.Elem().FieldByName("x").Interface() }) shouldPanic("Interface", func() { v.Elem().FieldByName("y").Interface() }) shouldPanic("Method", func() { v.Type().Method(0) }) } func TestSetPanic(t *testing.T) { ok := func(f func()) { f() } bad := func(f func()) { shouldPanic("Set", f) } clear := func(v Value) { v.Set(Zero(v.Type())) } type t0 struct { W int } type t1 struct { Y int t0 } type T2 struct { Z int namedT0 t0 } type T struct { X int t1 T2 NamedT1 t1 NamedT2 T2 namedT1 t1 namedT2 T2 } // not addressable v := ValueOf(T{}) bad(func() { clear(v.Field(0)) }) // .X bad(func() { clear(v.Field(1)) }) // .t1 bad(func() { clear(v.Field(1).Field(0)) }) // .t1.Y bad(func() { clear(v.Field(1).Field(1)) }) // .t1.t0 bad(func() { clear(v.Field(1).Field(1).Field(0)) }) // .t1.t0.W bad(func() { clear(v.Field(2)) }) // .T2 bad(func() { clear(v.Field(2).Field(0)) }) // .T2.Z bad(func() { clear(v.Field(2).Field(1)) }) // .T2.namedT0 bad(func() { clear(v.Field(2).Field(1).Field(0)) }) // .T2.namedT0.W bad(func() { clear(v.Field(3)) }) // .NamedT1 bad(func() { clear(v.Field(3).Field(0)) }) // .NamedT1.Y bad(func() { clear(v.Field(3).Field(1)) }) // .NamedT1.t0 bad(func() { clear(v.Field(3).Field(1).Field(0)) }) // .NamedT1.t0.W bad(func() { clear(v.Field(4)) }) // .NamedT2 bad(func() { clear(v.Field(4).Field(0)) }) // .NamedT2.Z bad(func() { clear(v.Field(4).Field(1)) }) // .NamedT2.namedT0 bad(func() { clear(v.Field(4).Field(1).Field(0)) }) // .NamedT2.namedT0.W bad(func() { clear(v.Field(5)) }) // .namedT1 bad(func() { clear(v.Field(5).Field(0)) }) // .namedT1.Y bad(func() { clear(v.Field(5).Field(1)) }) // .namedT1.t0 bad(func() { clear(v.Field(5).Field(1).Field(0)) }) // .namedT1.t0.W bad(func() { clear(v.Field(6)) }) // .namedT2 bad(func() { clear(v.Field(6).Field(0)) }) // .namedT2.Z bad(func() { clear(v.Field(6).Field(1)) }) // .namedT2.namedT0 bad(func() { clear(v.Field(6).Field(1).Field(0)) }) // .namedT2.namedT0.W // addressable v = ValueOf(&T{}).Elem() ok(func() { clear(v.Field(0)) }) // .X bad(func() { clear(v.Field(1)) }) // .t1 ok(func() { clear(v.Field(1).Field(0)) }) // .t1.Y bad(func() { clear(v.Field(1).Field(1)) }) // .t1.t0 ok(func() { clear(v.Field(1).Field(1).Field(0)) }) // .t1.t0.W ok(func() { clear(v.Field(2)) }) // .T2 ok(func() { clear(v.Field(2).Field(0)) }) // .T2.Z bad(func() { clear(v.Field(2).Field(1)) }) // .T2.namedT0 bad(func() { clear(v.Field(2).Field(1).Field(0)) }) // .T2.namedT0.W ok(func() { clear(v.Field(3)) }) // .NamedT1 ok(func() { clear(v.Field(3).Field(0)) }) // .NamedT1.Y bad(func() { clear(v.Field(3).Field(1)) }) // .NamedT1.t0 ok(func() { clear(v.Field(3).Field(1).Field(0)) }) // .NamedT1.t0.W ok(func() { clear(v.Field(4)) }) // .NamedT2 ok(func() { clear(v.Field(4).Field(0)) }) // .NamedT2.Z bad(func() { clear(v.Field(4).Field(1)) }) // .NamedT2.namedT0 bad(func() { clear(v.Field(4).Field(1).Field(0)) }) // .NamedT2.namedT0.W bad(func() { clear(v.Field(5)) }) // .namedT1 bad(func() { clear(v.Field(5).Field(0)) }) // .namedT1.Y bad(func() { clear(v.Field(5).Field(1)) }) // .namedT1.t0 bad(func() { clear(v.Field(5).Field(1).Field(0)) }) // .namedT1.t0.W bad(func() { clear(v.Field(6)) }) // .namedT2 bad(func() { clear(v.Field(6).Field(0)) }) // .namedT2.Z bad(func() { clear(v.Field(6).Field(1)) }) // .namedT2.namedT0 bad(func() { clear(v.Field(6).Field(1).Field(0)) }) // .namedT2.namedT0.W } type timp int func (t timp) W() {} func (t timp) Y() {} func (t timp) w() {} func (t timp) y() {} func TestCallPanic(t *testing.T) { type t0 interface { W() w() } type T1 interface { Y() y() } type T2 struct { T1 t0 } type T struct { t0 // 0 T1 // 1 NamedT0 t0 // 2 NamedT1 T1 // 3 NamedT2 T2 // 4 namedT0 t0 // 5 namedT1 T1 // 6 namedT2 T2 // 7 } ok := func(f func()) { f() } badCall := func(f func()) { shouldPanic("Call", f) } badMethod := func(f func()) { shouldPanic("Method", f) } call := func(v Value) { v.Call(nil) } i := timp(0) v := ValueOf(T{i, i, i, i, T2{i, i}, i, i, T2{i, i}}) badCall(func() { call(v.Field(0).Method(0)) }) // .t0.W badCall(func() { call(v.Field(0).Elem().Method(0)) }) // .t0.W badCall(func() { call(v.Field(0).Method(1)) }) // .t0.w badMethod(func() { call(v.Field(0).Elem().Method(2)) }) // .t0.w ok(func() { call(v.Field(1).Method(0)) }) // .T1.Y ok(func() { call(v.Field(1).Elem().Method(0)) }) // .T1.Y badCall(func() { call(v.Field(1).Method(1)) }) // .T1.y badMethod(func() { call(v.Field(1).Elem().Method(2)) }) // .T1.y ok(func() { call(v.Field(2).Method(0)) }) // .NamedT0.W ok(func() { call(v.Field(2).Elem().Method(0)) }) // .NamedT0.W badCall(func() { call(v.Field(2).Method(1)) }) // .NamedT0.w badMethod(func() { call(v.Field(2).Elem().Method(2)) }) // .NamedT0.w ok(func() { call(v.Field(3).Method(0)) }) // .NamedT1.Y ok(func() { call(v.Field(3).Elem().Method(0)) }) // .NamedT1.Y badCall(func() { call(v.Field(3).Method(1)) }) // .NamedT1.y badMethod(func() { call(v.Field(3).Elem().Method(3)) }) // .NamedT1.y ok(func() { call(v.Field(4).Field(0).Method(0)) }) // .NamedT2.T1.Y ok(func() { call(v.Field(4).Field(0).Elem().Method(0)) }) // .NamedT2.T1.W badCall(func() { call(v.Field(4).Field(1).Method(0)) }) // .NamedT2.t0.W badCall(func() { call(v.Field(4).Field(1).Elem().Method(0)) }) // .NamedT2.t0.W badCall(func() { call(v.Field(5).Method(0)) }) // .namedT0.W badCall(func() { call(v.Field(5).Elem().Method(0)) }) // .namedT0.W badCall(func() { call(v.Field(5).Method(1)) }) // .namedT0.w badMethod(func() { call(v.Field(5).Elem().Method(2)) }) // .namedT0.w badCall(func() { call(v.Field(6).Method(0)) }) // .namedT1.Y badCall(func() { call(v.Field(6).Elem().Method(0)) }) // .namedT1.Y badCall(func() { call(v.Field(6).Method(0)) }) // .namedT1.y badCall(func() { call(v.Field(6).Elem().Method(0)) }) // .namedT1.y badCall(func() { call(v.Field(7).Field(0).Method(0)) }) // .namedT2.T1.Y badCall(func() { call(v.Field(7).Field(0).Elem().Method(0)) }) // .namedT2.T1.W badCall(func() { call(v.Field(7).Field(1).Method(0)) }) // .namedT2.t0.W badCall(func() { call(v.Field(7).Field(1).Elem().Method(0)) }) // .namedT2.t0.W } func TestValuePanic(t *testing.T) { vo := ValueOf shouldPanic("reflect.Value.Addr of unaddressable value", func() { vo(0).Addr() }) shouldPanic("call of reflect.Value.Bool on float64 Value", func() { vo(0.0).Bool() }) shouldPanic("call of reflect.Value.Bytes on string Value", func() { vo("").Bytes() }) shouldPanic("call of reflect.Value.Call on bool Value", func() { vo(true).Call(nil) }) shouldPanic("call of reflect.Value.CallSlice on int Value", func() { vo(0).CallSlice(nil) }) shouldPanic("call of reflect.Value.Close on string Value", func() { vo("").Close() }) shouldPanic("call of reflect.Value.Complex on float64 Value", func() { vo(0.0).Complex() }) shouldPanic("call of reflect.Value.Elem on bool Value", func() { vo(false).Elem() }) shouldPanic("call of reflect.Value.Field on int Value", func() { vo(0).Field(0) }) shouldPanic("call of reflect.Value.Float on string Value", func() { vo("").Float() }) shouldPanic("call of reflect.Value.Index on float64 Value", func() { vo(0.0).Index(0) }) shouldPanic("call of reflect.Value.Int on bool Value", func() { vo(false).Int() }) shouldPanic("call of reflect.Value.IsNil on int Value", func() { vo(0).IsNil() }) shouldPanic("call of reflect.Value.Len on bool Value", func() { vo(false).Len() }) shouldPanic("call of reflect.Value.MapIndex on float64 Value", func() { vo(0.0).MapIndex(vo(0.0)) }) shouldPanic("call of reflect.Value.MapKeys on string Value", func() { vo("").MapKeys() }) shouldPanic("call of reflect.Value.MapRange on int Value", func() { vo(0).MapRange() }) shouldPanic("call of reflect.Value.Method on zero Value", func() { vo(nil).Method(0) }) shouldPanic("call of reflect.Value.NumField on string Value", func() { vo("").NumField() }) shouldPanic("call of reflect.Value.NumMethod on zero Value", func() { vo(nil).NumMethod() }) shouldPanic("call of reflect.Value.OverflowComplex on float64 Value", func() { vo(float64(0)).OverflowComplex(0) }) shouldPanic("call of reflect.Value.OverflowFloat on int64 Value", func() { vo(int64(0)).OverflowFloat(0) }) shouldPanic("call of reflect.Value.OverflowInt on uint64 Value", func() { vo(uint64(0)).OverflowInt(0) }) shouldPanic("call of reflect.Value.OverflowUint on complex64 Value", func() { vo(complex64(0)).OverflowUint(0) }) shouldPanic("call of reflect.Value.Recv on string Value", func() { vo("").Recv() }) shouldPanic("call of reflect.Value.Send on bool Value", func() { vo(true).Send(vo(true)) }) shouldPanic("value of type string is not assignable to type bool", func() { vo(new(bool)).Elem().Set(vo("")) }) shouldPanic("call of reflect.Value.SetBool on string Value", func() { vo(new(string)).Elem().SetBool(false) }) shouldPanic("reflect.Value.SetBytes using unaddressable value", func() { vo("").SetBytes(nil) }) shouldPanic("call of reflect.Value.SetCap on string Value", func() { vo(new(string)).Elem().SetCap(0) }) shouldPanic("call of reflect.Value.SetComplex on string Value", func() { vo(new(string)).Elem().SetComplex(0) }) shouldPanic("call of reflect.Value.SetFloat on string Value", func() { vo(new(string)).Elem().SetFloat(0) }) shouldPanic("call of reflect.Value.SetInt on string Value", func() { vo(new(string)).Elem().SetInt(0) }) shouldPanic("call of reflect.Value.SetLen on string Value", func() { vo(new(string)).Elem().SetLen(0) }) shouldPanic("call of reflect.Value.SetString on int Value", func() { vo(new(int)).Elem().SetString("") }) shouldPanic("reflect.Value.SetUint using unaddressable value", func() { vo(0.0).SetUint(0) }) shouldPanic("call of reflect.Value.Slice on bool Value", func() { vo(true).Slice(1, 2) }) shouldPanic("call of reflect.Value.Slice3 on int Value", func() { vo(0).Slice3(1, 2, 3) }) shouldPanic("call of reflect.Value.TryRecv on bool Value", func() { vo(true).TryRecv() }) shouldPanic("call of reflect.Value.TrySend on string Value", func() { vo("").TrySend(vo("")) }) shouldPanic("call of reflect.Value.Uint on float64 Value", func() { vo(0.0).Uint() }) } func shouldPanic(expect string, f func()) { defer func() { r := recover() if r == nil { panic("did not panic") } if expect != "" { var s string switch r := r.(type) { case string: s = r case *ValueError: s = r.Error() default: panic(fmt.Sprintf("panicked with unexpected type %T", r)) } if !strings.HasPrefix(s, "reflect") { panic(`panic string does not start with "reflect": ` + s) } if !strings.Contains(s, expect) { panic(`panic string does not contain "` + expect + `": ` + s) } } }() f() } func isNonNil(x any) { if x == nil { panic("nil interface") } } func isValid(v Value) { if !v.IsValid() { panic("zero Value") } } func TestAlias(t *testing.T) { x := string("hello") v := ValueOf(&x).Elem() oldvalue := v.Interface() v.SetString("world") newvalue := v.Interface() if oldvalue != "hello" || newvalue != "world" { t.Errorf("aliasing: old=%q new=%q, want hello, world", oldvalue, newvalue) } } var V = ValueOf func EmptyInterfaceV(x any) Value { return ValueOf(&x).Elem() } func ReaderV(x io.Reader) Value { return ValueOf(&x).Elem() } func ReadWriterV(x io.ReadWriter) Value { return ValueOf(&x).Elem() } type Empty struct{} type MyStruct struct { x int `some:"tag"` } type MyStruct1 struct { x struct { int `some:"bar"` } } type MyStruct2 struct { x struct { int `some:"foo"` } } type MyString string type MyBytes []byte type MyBytesArrayPtr0 *[0]byte type MyBytesArrayPtr *[4]byte type MyBytesArray0 [0]byte type MyBytesArray [4]byte type MyRunes []int32 type MyFunc func() type MyByte byte type IntChan chan int type IntChanRecv <-chan int type IntChanSend chan<- int type BytesChan chan []byte type BytesChanRecv <-chan []byte type BytesChanSend chan<- []byte var convertTests = []struct { in Value out Value }{ // numbers /* Edit .+1,/\*\//-1>cat >/tmp/x.go && go run /tmp/x.go package main import "fmt" var numbers = []string{ "int8", "uint8", "int16", "uint16", "int32", "uint32", "int64", "uint64", "int", "uint", "uintptr", "float32", "float64", } func main() { // all pairs but in an unusual order, // to emit all the int8, uint8 cases // before n grows too big. n := 1 for i, f := range numbers { for _, g := range numbers[i:] { fmt.Printf("\t{V(%s(%d)), V(%s(%d))},\n", f, n, g, n) n++ if f != g { fmt.Printf("\t{V(%s(%d)), V(%s(%d))},\n", g, n, f, n) n++ } } } } */ {V(int8(1)), V(int8(1))}, {V(int8(2)), V(uint8(2))}, {V(uint8(3)), V(int8(3))}, {V(int8(4)), V(int16(4))}, {V(int16(5)), V(int8(5))}, {V(int8(6)), V(uint16(6))}, {V(uint16(7)), V(int8(7))}, {V(int8(8)), V(int32(8))}, {V(int32(9)), V(int8(9))}, {V(int8(10)), V(uint32(10))}, {V(uint32(11)), V(int8(11))}, {V(int8(12)), V(int64(12))}, {V(int64(13)), V(int8(13))}, {V(int8(14)), V(uint64(14))}, {V(uint64(15)), V(int8(15))}, {V(int8(16)), V(int(16))}, {V(int(17)), V(int8(17))}, {V(int8(18)), V(uint(18))}, {V(uint(19)), V(int8(19))}, {V(int8(20)), V(uintptr(20))}, {V(uintptr(21)), V(int8(21))}, {V(int8(22)), V(float32(22))}, {V(float32(23)), V(int8(23))}, {V(int8(24)), V(float64(24))}, {V(float64(25)), V(int8(25))}, {V(uint8(26)), V(uint8(26))}, {V(uint8(27)), V(int16(27))}, {V(int16(28)), V(uint8(28))}, {V(uint8(29)), V(uint16(29))}, {V(uint16(30)), V(uint8(30))}, {V(uint8(31)), V(int32(31))}, {V(int32(32)), V(uint8(32))}, {V(uint8(33)), V(uint32(33))}, {V(uint32(34)), V(uint8(34))}, {V(uint8(35)), V(int64(35))}, {V(int64(36)), V(uint8(36))}, {V(uint8(37)), V(uint64(37))}, {V(uint64(38)), V(uint8(38))}, {V(uint8(39)), V(int(39))}, {V(int(40)), V(uint8(40))}, {V(uint8(41)), V(uint(41))}, {V(uint(42)), V(uint8(42))}, {V(uint8(43)), V(uintptr(43))}, {V(uintptr(44)), V(uint8(44))}, {V(uint8(45)), V(float32(45))}, {V(float32(46)), V(uint8(46))}, {V(uint8(47)), V(float64(47))}, {V(float64(48)), V(uint8(48))}, {V(int16(49)), V(int16(49))}, {V(int16(50)), V(uint16(50))}, {V(uint16(51)), V(int16(51))}, {V(int16(52)), V(int32(52))}, {V(int32(53)), V(int16(53))}, {V(int16(54)), V(uint32(54))}, {V(uint32(55)), V(int16(55))}, {V(int16(56)), V(int64(56))}, {V(int64(57)), V(int16(57))}, {V(int16(58)), V(uint64(58))}, {V(uint64(59)), V(int16(59))}, {V(int16(60)), V(int(60))}, {V(int(61)), V(int16(61))}, {V(int16(62)), V(uint(62))}, {V(uint(63)), V(int16(63))}, {V(int16(64)), V(uintptr(64))}, {V(uintptr(65)), V(int16(65))}, {V(int16(66)), V(float32(66))}, {V(float32(67)), V(int16(67))}, {V(int16(68)), V(float64(68))}, {V(float64(69)), V(int16(69))}, {V(uint16(70)), V(uint16(70))}, {V(uint16(71)), V(int32(71))}, {V(int32(72)), V(uint16(72))}, {V(uint16(73)), V(uint32(73))}, {V(uint32(74)), V(uint16(74))}, {V(uint16(75)), V(int64(75))}, {V(int64(76)), V(uint16(76))}, {V(uint16(77)), V(uint64(77))}, {V(uint64(78)), V(uint16(78))}, {V(uint16(79)), V(int(79))}, {V(int(80)), V(uint16(80))}, {V(uint16(81)), V(uint(81))}, {V(uint(82)), V(uint16(82))}, {V(uint16(83)), V(uintptr(83))}, {V(uintptr(84)), V(uint16(84))}, {V(uint16(85)), V(float32(85))}, {V(float32(86)), V(uint16(86))}, {V(uint16(87)), V(float64(87))}, {V(float64(88)), V(uint16(88))}, {V(int32(89)), V(int32(89))}, {V(int32(90)), V(uint32(90))}, {V(uint32(91)), V(int32(91))}, {V(int32(92)), V(int64(92))}, {V(int64(93)), V(int32(93))}, {V(int32(94)), V(uint64(94))}, {V(uint64(95)), V(int32(95))}, {V(int32(96)), V(int(96))}, {V(int(97)), V(int32(97))}, {V(int32(98)), V(uint(98))}, {V(uint(99)), V(int32(99))}, {V(int32(100)), V(uintptr(100))}, {V(uintptr(101)), V(int32(101))}, {V(int32(102)), V(float32(102))}, {V(float32(103)), V(int32(103))}, {V(int32(104)), V(float64(104))}, {V(float64(105)), V(int32(105))}, {V(uint32(106)), V(uint32(106))}, {V(uint32(107)), V(int64(107))}, {V(int64(108)), V(uint32(108))}, {V(uint32(109)), V(uint64(109))}, {V(uint64(110)), V(uint32(110))}, {V(uint32(111)), V(int(111))}, {V(int(112)), V(uint32(112))}, {V(uint32(113)), V(uint(113))}, {V(uint(114)), V(uint32(114))}, {V(uint32(115)), V(uintptr(115))}, {V(uintptr(116)), V(uint32(116))}, {V(uint32(117)), V(float32(117))}, {V(float32(118)), V(uint32(118))}, {V(uint32(119)), V(float64(119))}, {V(float64(120)), V(uint32(120))}, {V(int64(121)), V(int64(121))}, {V(int64(122)), V(uint64(122))}, {V(uint64(123)), V(int64(123))}, {V(int64(124)), V(int(124))}, {V(int(125)), V(int64(125))}, {V(int64(126)), V(uint(126))}, {V(uint(127)), V(int64(127))}, {V(int64(128)), V(uintptr(128))}, {V(uintptr(129)), V(int64(129))}, {V(int64(130)), V(float32(130))}, {V(float32(131)), V(int64(131))}, {V(int64(132)), V(float64(132))}, {V(float64(133)), V(int64(133))}, {V(uint64(134)), V(uint64(134))}, {V(uint64(135)), V(int(135))}, {V(int(136)), V(uint64(136))}, {V(uint64(137)), V(uint(137))}, {V(uint(138)), V(uint64(138))}, {V(uint64(139)), V(uintptr(139))}, {V(uintptr(140)), V(uint64(140))}, {V(uint64(141)), V(float32(141))}, {V(float32(142)), V(uint64(142))}, {V(uint64(143)), V(float64(143))}, {V(float64(144)), V(uint64(144))}, {V(int(145)), V(int(145))}, {V(int(146)), V(uint(146))}, {V(uint(147)), V(int(147))}, {V(int(148)), V(uintptr(148))}, {V(uintptr(149)), V(int(149))}, {V(int(150)), V(float32(150))}, {V(float32(151)), V(int(151))}, {V(int(152)), V(float64(152))}, {V(float64(153)), V(int(153))}, {V(uint(154)), V(uint(154))}, {V(uint(155)), V(uintptr(155))}, {V(uintptr(156)), V(uint(156))}, {V(uint(157)), V(float32(157))}, {V(float32(158)), V(uint(158))}, {V(uint(159)), V(float64(159))}, {V(float64(160)), V(uint(160))}, {V(uintptr(161)), V(uintptr(161))}, {V(uintptr(162)), V(float32(162))}, {V(float32(163)), V(uintptr(163))}, {V(uintptr(164)), V(float64(164))}, {V(float64(165)), V(uintptr(165))}, {V(float32(166)), V(float32(166))}, {V(float32(167)), V(float64(167))}, {V(float64(168)), V(float32(168))}, {V(float64(169)), V(float64(169))}, // truncation {V(float64(1.5)), V(int(1))}, // complex {V(complex64(1i)), V(complex64(1i))}, {V(complex64(2i)), V(complex128(2i))}, {V(complex128(3i)), V(complex64(3i))}, {V(complex128(4i)), V(complex128(4i))}, // string {V(string("hello")), V(string("hello"))}, {V(string("bytes1")), V([]byte("bytes1"))}, {V([]byte("bytes2")), V(string("bytes2"))}, {V([]byte("bytes3")), V([]byte("bytes3"))}, {V(string("runes♝")), V([]rune("runes♝"))}, {V([]rune("runes♕")), V(string("runes♕"))}, {V([]rune("runes🙈🙉🙊")), V([]rune("runes🙈🙉🙊"))}, {V(int('a')), V(string("a"))}, {V(int8('a')), V(string("a"))}, {V(int16('a')), V(string("a"))}, {V(int32('a')), V(string("a"))}, {V(int64('a')), V(string("a"))}, {V(uint('a')), V(string("a"))}, {V(uint8('a')), V(string("a"))}, {V(uint16('a')), V(string("a"))}, {V(uint32('a')), V(string("a"))}, {V(uint64('a')), V(string("a"))}, {V(uintptr('a')), V(string("a"))}, {V(int(-1)), V(string("\uFFFD"))}, {V(int8(-2)), V(string("\uFFFD"))}, {V(int16(-3)), V(string("\uFFFD"))}, {V(int32(-4)), V(string("\uFFFD"))}, {V(int64(-5)), V(string("\uFFFD"))}, {V(int64(-1 << 32)), V(string("\uFFFD"))}, {V(int64(1 << 32)), V(string("\uFFFD"))}, {V(uint(0x110001)), V(string("\uFFFD"))}, {V(uint32(0x110002)), V(string("\uFFFD"))}, {V(uint64(0x110003)), V(string("\uFFFD"))}, {V(uint64(1 << 32)), V(string("\uFFFD"))}, {V(uintptr(0x110004)), V(string("\uFFFD"))}, // named string {V(MyString("hello")), V(string("hello"))}, {V(string("hello")), V(MyString("hello"))}, {V(string("hello")), V(string("hello"))}, {V(MyString("hello")), V(MyString("hello"))}, {V(MyString("bytes1")), V([]byte("bytes1"))}, {V([]byte("bytes2")), V(MyString("bytes2"))}, {V([]byte("bytes3")), V([]byte("bytes3"))}, {V(MyString("runes♝")), V([]rune("runes♝"))}, {V([]rune("runes♕")), V(MyString("runes♕"))}, {V([]rune("runes🙈🙉🙊")), V([]rune("runes🙈🙉🙊"))}, {V([]rune("runes🙈🙉🙊")), V(MyRunes("runes🙈🙉🙊"))}, {V(MyRunes("runes🙈🙉🙊")), V([]rune("runes🙈🙉🙊"))}, {V(int('a')), V(MyString("a"))}, {V(int8('a')), V(MyString("a"))}, {V(int16('a')), V(MyString("a"))}, {V(int32('a')), V(MyString("a"))}, {V(int64('a')), V(MyString("a"))}, {V(uint('a')), V(MyString("a"))}, {V(uint8('a')), V(MyString("a"))}, {V(uint16('a')), V(MyString("a"))}, {V(uint32('a')), V(MyString("a"))}, {V(uint64('a')), V(MyString("a"))}, {V(uintptr('a')), V(MyString("a"))}, {V(int(-1)), V(MyString("\uFFFD"))}, {V(int8(-2)), V(MyString("\uFFFD"))}, {V(int16(-3)), V(MyString("\uFFFD"))}, {V(int32(-4)), V(MyString("\uFFFD"))}, {V(int64(-5)), V(MyString("\uFFFD"))}, {V(uint(0x110001)), V(MyString("\uFFFD"))}, {V(uint32(0x110002)), V(MyString("\uFFFD"))}, {V(uint64(0x110003)), V(MyString("\uFFFD"))}, {V(uintptr(0x110004)), V(MyString("\uFFFD"))}, // named []byte {V(string("bytes1")), V(MyBytes("bytes1"))}, {V(MyBytes("bytes2")), V(string("bytes2"))}, {V(MyBytes("bytes3")), V(MyBytes("bytes3"))}, {V(MyString("bytes1")), V(MyBytes("bytes1"))}, {V(MyBytes("bytes2")), V(MyString("bytes2"))}, // named []rune {V(string("runes♝")), V(MyRunes("runes♝"))}, {V(MyRunes("runes♕")), V(string("runes♕"))}, {V(MyRunes("runes🙈🙉🙊")), V(MyRunes("runes🙈🙉🙊"))}, {V(MyString("runes♝")), V(MyRunes("runes♝"))}, {V(MyRunes("runes♕")), V(MyString("runes♕"))}, // slice to array {V([]byte(nil)), V([0]byte{})}, {V([]byte{}), V([0]byte{})}, {V([]byte{1}), V([1]byte{1})}, {V([]byte{1, 2}), V([2]byte{1, 2})}, {V([]byte{1, 2, 3}), V([3]byte{1, 2, 3})}, {V(MyBytes([]byte(nil))), V([0]byte{})}, {V(MyBytes{}), V([0]byte{})}, {V(MyBytes{1}), V([1]byte{1})}, {V(MyBytes{1, 2}), V([2]byte{1, 2})}, {V(MyBytes{1, 2, 3}), V([3]byte{1, 2, 3})}, {V([]byte(nil)), V(MyBytesArray0{})}, {V([]byte{}), V(MyBytesArray0([0]byte{}))}, {V([]byte{1, 2, 3, 4}), V(MyBytesArray([4]byte{1, 2, 3, 4}))}, {V(MyBytes{}), V(MyBytesArray0([0]byte{}))}, {V(MyBytes{5, 6, 7, 8}), V(MyBytesArray([4]byte{5, 6, 7, 8}))}, {V([]MyByte{}), V([0]MyByte{})}, {V([]MyByte{1, 2}), V([2]MyByte{1, 2})}, // slice to array pointer {V([]byte(nil)), V((*[0]byte)(nil))}, {V([]byte{}), V(new([0]byte))}, {V([]byte{7}), V(&[1]byte{7})}, {V(MyBytes([]byte(nil))), V((*[0]byte)(nil))}, {V(MyBytes([]byte{})), V(new([0]byte))}, {V(MyBytes([]byte{9})), V(&[1]byte{9})}, {V([]byte(nil)), V(MyBytesArrayPtr0(nil))}, {V([]byte{}), V(MyBytesArrayPtr0(new([0]byte)))}, {V([]byte{1, 2, 3, 4}), V(MyBytesArrayPtr(&[4]byte{1, 2, 3, 4}))}, {V(MyBytes([]byte{})), V(MyBytesArrayPtr0(new([0]byte)))}, {V(MyBytes([]byte{5, 6, 7, 8})), V(MyBytesArrayPtr(&[4]byte{5, 6, 7, 8}))}, {V([]byte(nil)), V((*MyBytesArray0)(nil))}, {V([]byte{}), V((*MyBytesArray0)(new([0]byte)))}, {V([]byte{1, 2, 3, 4}), V(&MyBytesArray{1, 2, 3, 4})}, {V(MyBytes([]byte(nil))), V((*MyBytesArray0)(nil))}, {V(MyBytes([]byte{})), V((*MyBytesArray0)(new([0]byte)))}, {V(MyBytes([]byte{5, 6, 7, 8})), V(&MyBytesArray{5, 6, 7, 8})}, {V(new([0]byte)), V(new(MyBytesArray0))}, {V(new(MyBytesArray0)), V(new([0]byte))}, {V(MyBytesArrayPtr0(nil)), V((*[0]byte)(nil))}, {V((*[0]byte)(nil)), V(MyBytesArrayPtr0(nil))}, // named types and equal underlying types {V(new(int)), V(new(integer))}, {V(new(integer)), V(new(int))}, {V(Empty{}), V(struct{}{})}, {V(new(Empty)), V(new(struct{}))}, {V(struct{}{}), V(Empty{})}, {V(new(struct{})), V(new(Empty))}, {V(Empty{}), V(Empty{})}, {V(MyBytes{}), V([]byte{})}, {V([]byte{}), V(MyBytes{})}, {V((func())(nil)), V(MyFunc(nil))}, {V((MyFunc)(nil)), V((func())(nil))}, // structs with different tags {V(struct { x int `some:"foo"` }{}), V(struct { x int `some:"bar"` }{})}, {V(struct { x int `some:"bar"` }{}), V(struct { x int `some:"foo"` }{})}, {V(MyStruct{}), V(struct { x int `some:"foo"` }{})}, {V(struct { x int `some:"foo"` }{}), V(MyStruct{})}, {V(MyStruct{}), V(struct { x int `some:"bar"` }{})}, {V(struct { x int `some:"bar"` }{}), V(MyStruct{})}, {V(MyStruct1{}), V(MyStruct2{})}, {V(MyStruct2{}), V(MyStruct1{})}, // can convert *byte and *MyByte {V((*byte)(nil)), V((*MyByte)(nil))}, {V((*MyByte)(nil)), V((*byte)(nil))}, // cannot convert mismatched array sizes {V([2]byte{}), V([2]byte{})}, {V([3]byte{}), V([3]byte{})}, {V(MyBytesArray0{}), V([0]byte{})}, {V([0]byte{}), V(MyBytesArray0{})}, // cannot convert other instances {V((**byte)(nil)), V((**byte)(nil))}, {V((**MyByte)(nil)), V((**MyByte)(nil))}, {V((chan byte)(nil)), V((chan byte)(nil))}, {V((chan MyByte)(nil)), V((chan MyByte)(nil))}, {V(([]byte)(nil)), V(([]byte)(nil))}, {V(([]MyByte)(nil)), V(([]MyByte)(nil))}, {V((map[int]byte)(nil)), V((map[int]byte)(nil))}, {V((map[int]MyByte)(nil)), V((map[int]MyByte)(nil))}, {V((map[byte]int)(nil)), V((map[byte]int)(nil))}, {V((map[MyByte]int)(nil)), V((map[MyByte]int)(nil))}, {V([2]byte{}), V([2]byte{})}, {V([2]MyByte{}), V([2]MyByte{})}, // other {V((***int)(nil)), V((***int)(nil))}, {V((***byte)(nil)), V((***byte)(nil))}, {V((***int32)(nil)), V((***int32)(nil))}, {V((***int64)(nil)), V((***int64)(nil))}, {V((chan byte)(nil)), V((chan byte)(nil))}, {V((chan MyByte)(nil)), V((chan MyByte)(nil))}, {V((map[int]bool)(nil)), V((map[int]bool)(nil))}, {V((map[int]byte)(nil)), V((map[int]byte)(nil))}, {V((map[uint]bool)(nil)), V((map[uint]bool)(nil))}, {V([]uint(nil)), V([]uint(nil))}, {V([]int(nil)), V([]int(nil))}, {V(new(any)), V(new(any))}, {V(new(io.Reader)), V(new(io.Reader))}, {V(new(io.Writer)), V(new(io.Writer))}, // channels {V(IntChan(nil)), V((chan<- int)(nil))}, {V(IntChan(nil)), V((<-chan int)(nil))}, {V((chan int)(nil)), V(IntChanRecv(nil))}, {V((chan int)(nil)), V(IntChanSend(nil))}, {V(IntChanRecv(nil)), V((<-chan int)(nil))}, {V((<-chan int)(nil)), V(IntChanRecv(nil))}, {V(IntChanSend(nil)), V((chan<- int)(nil))}, {V((chan<- int)(nil)), V(IntChanSend(nil))}, {V(IntChan(nil)), V((chan int)(nil))}, {V((chan int)(nil)), V(IntChan(nil))}, {V((chan int)(nil)), V((<-chan int)(nil))}, {V((chan int)(nil)), V((chan<- int)(nil))}, {V(BytesChan(nil)), V((chan<- []byte)(nil))}, {V(BytesChan(nil)), V((<-chan []byte)(nil))}, {V((chan []byte)(nil)), V(BytesChanRecv(nil))}, {V((chan []byte)(nil)), V(BytesChanSend(nil))}, {V(BytesChanRecv(nil)), V((<-chan []byte)(nil))}, {V((<-chan []byte)(nil)), V(BytesChanRecv(nil))}, {V(BytesChanSend(nil)), V((chan<- []byte)(nil))}, {V((chan<- []byte)(nil)), V(BytesChanSend(nil))}, {V(BytesChan(nil)), V((chan []byte)(nil))}, {V((chan []byte)(nil)), V(BytesChan(nil))}, {V((chan []byte)(nil)), V((<-chan []byte)(nil))}, {V((chan []byte)(nil)), V((chan<- []byte)(nil))}, // cannot convert other instances (channels) {V(IntChan(nil)), V(IntChan(nil))}, {V(IntChanRecv(nil)), V(IntChanRecv(nil))}, {V(IntChanSend(nil)), V(IntChanSend(nil))}, {V(BytesChan(nil)), V(BytesChan(nil))}, {V(BytesChanRecv(nil)), V(BytesChanRecv(nil))}, {V(BytesChanSend(nil)), V(BytesChanSend(nil))}, // interfaces {V(int(1)), EmptyInterfaceV(int(1))}, {V(string("hello")), EmptyInterfaceV(string("hello"))}, {V(new(bytes.Buffer)), ReaderV(new(bytes.Buffer))}, {ReadWriterV(new(bytes.Buffer)), ReaderV(new(bytes.Buffer))}, {V(new(bytes.Buffer)), ReadWriterV(new(bytes.Buffer))}, } func TestConvert(t *testing.T) { canConvert := map[[2]Type]bool{} all := map[Type]bool{} for _, tt := range convertTests { t1 := tt.in.Type() if !t1.ConvertibleTo(t1) { t.Errorf("(%s).ConvertibleTo(%s) = false, want true", t1, t1) continue } t2 := tt.out.Type() if !t1.ConvertibleTo(t2) { t.Errorf("(%s).ConvertibleTo(%s) = false, want true", t1, t2) continue } all[t1] = true all[t2] = true canConvert[[2]Type{t1, t2}] = true // vout1 represents the in value converted to the in type. v1 := tt.in if !v1.CanConvert(t1) { t.Errorf("ValueOf(%T(%[1]v)).CanConvert(%s) = false, want true", tt.in.Interface(), t1) } vout1 := v1.Convert(t1) out1 := vout1.Interface() if vout1.Type() != tt.in.Type() || !DeepEqual(out1, tt.in.Interface()) { t.Errorf("ValueOf(%T(%[1]v)).Convert(%s) = %T(%[3]v), want %T(%[4]v)", tt.in.Interface(), t1, out1, tt.in.Interface()) } // vout2 represents the in value converted to the out type. if !v1.CanConvert(t2) { t.Errorf("ValueOf(%T(%[1]v)).CanConvert(%s) = false, want true", tt.in.Interface(), t2) } vout2 := v1.Convert(t2) out2 := vout2.Interface() if vout2.Type() != tt.out.Type() || !DeepEqual(out2, tt.out.Interface()) { t.Errorf("ValueOf(%T(%[1]v)).Convert(%s) = %T(%[3]v), want %T(%[4]v)", tt.in.Interface(), t2, out2, tt.out.Interface()) } if got, want := vout2.Kind(), vout2.Type().Kind(); got != want { t.Errorf("ValueOf(%T(%[1]v)).Convert(%s) has internal kind %v want %v", tt.in.Interface(), t1, got, want) } // vout3 represents a new value of the out type, set to vout2. This makes // sure the converted value vout2 is really usable as a regular value. vout3 := New(t2).Elem() vout3.Set(vout2) out3 := vout3.Interface() if vout3.Type() != tt.out.Type() || !DeepEqual(out3, tt.out.Interface()) { t.Errorf("Set(ValueOf(%T(%[1]v)).Convert(%s)) = %T(%[3]v), want %T(%[4]v)", tt.in.Interface(), t2, out3, tt.out.Interface()) } if IsRO(v1) { t.Errorf("table entry %v is RO, should not be", v1) } if IsRO(vout1) { t.Errorf("self-conversion output %v is RO, should not be", vout1) } if IsRO(vout2) { t.Errorf("conversion output %v is RO, should not be", vout2) } if IsRO(vout3) { t.Errorf("set(conversion output) %v is RO, should not be", vout3) } if !IsRO(MakeRO(v1).Convert(t1)) { t.Errorf("RO self-conversion output %v is not RO, should be", v1) } if !IsRO(MakeRO(v1).Convert(t2)) { t.Errorf("RO conversion output %v is not RO, should be", v1) } } // Assume that of all the types we saw during the tests, // if there wasn't an explicit entry for a conversion between // a pair of types, then it's not to be allowed. This checks for // things like 'int64' converting to '*int'. for t1 := range all { for t2 := range all { expectOK := t1 == t2 || canConvert[[2]Type{t1, t2}] || t2.Kind() == Interface && t2.NumMethod() == 0 if ok := t1.ConvertibleTo(t2); ok != expectOK { t.Errorf("(%s).ConvertibleTo(%s) = %v, want %v", t1, t2, ok, expectOK) } } } } func TestConvertPanic(t *testing.T) { s := make([]byte, 4) p := new([8]byte) v := ValueOf(s) pt := TypeOf(p) if !v.Type().ConvertibleTo(pt) { t.Errorf("[]byte should be convertible to *[8]byte") } if v.CanConvert(pt) { t.Errorf("slice with length 4 should not be convertible to *[8]byte") } shouldPanic("reflect: cannot convert slice with length 4 to pointer to array with length 8", func() { _ = v.Convert(pt) }) if v.CanConvert(pt.Elem()) { t.Errorf("slice with length 4 should not be convertible to [8]byte") } shouldPanic("reflect: cannot convert slice with length 4 to array with length 8", func() { _ = v.Convert(pt.Elem()) }) } func TestConvertSlice2Array(t *testing.T) { s := make([]int, 4) p := [4]int{} pt := TypeOf(p) ov := ValueOf(s) v := ov.Convert(pt) // Converting a slice to non-empty array needs to return // a non-addressable copy of the original memory. if v.CanAddr() { t.Fatalf("convert slice to non-empty array returns an addressable copy array") } for i := range s { ov.Index(i).Set(ValueOf(i + 1)) } for i := range s { if v.Index(i).Int() != 0 { t.Fatalf("slice (%v) mutation visible in converted result (%v)", ov, v) } } } var gFloat32 float32 const snan uint32 = 0x7f800001 func TestConvertNaNs(t *testing.T) { // Test to see if a store followed by a load of a signaling NaN // maintains the signaling bit. (This used to fail on the 387 port.) gFloat32 = math.Float32frombits(snan) runtime.Gosched() // make sure we don't optimize the store/load away if got := math.Float32bits(gFloat32); got != snan { t.Errorf("store/load of sNaN not faithful, got %x want %x", got, snan) } // Test reflect's conversion between float32s. See issue 36400. type myFloat32 float32 x := V(myFloat32(math.Float32frombits(snan))) y := x.Convert(TypeOf(float32(0))) z := y.Interface().(float32) if got := math.Float32bits(z); got != snan { t.Errorf("signaling nan conversion got %x, want %x", got, snan) } } type ComparableStruct struct { X int } type NonComparableStruct struct { X int Y map[string]int } var comparableTests = []struct { typ Type ok bool }{ {TypeOf(1), true}, {TypeOf("hello"), true}, {TypeOf(new(byte)), true}, {TypeOf((func())(nil)), false}, {TypeOf([]byte{}), false}, {TypeOf(map[string]int{}), false}, {TypeOf(make(chan int)), true}, {TypeOf(1.5), true}, {TypeOf(false), true}, {TypeOf(1i), true}, {TypeOf(ComparableStruct{}), true}, {TypeOf(NonComparableStruct{}), false}, {TypeOf([10]map[string]int{}), false}, {TypeOf([10]string{}), true}, {TypeOf(new(any)).Elem(), true}, } func TestComparable(t *testing.T) { for _, tt := range comparableTests { if ok := tt.typ.Comparable(); ok != tt.ok { t.Errorf("TypeOf(%v).Comparable() = %v, want %v", tt.typ, ok, tt.ok) } } } func TestOverflow(t *testing.T) { if ovf := V(float64(0)).OverflowFloat(1e300); ovf { t.Errorf("%v wrongly overflows float64", 1e300) } maxFloat32 := float64((1<<24 - 1) << (127 - 23)) if ovf := V(float32(0)).OverflowFloat(maxFloat32); ovf { t.Errorf("%v wrongly overflows float32", maxFloat32) } ovfFloat32 := float64((1<<24-1)<<(127-23) + 1<<(127-52)) if ovf := V(float32(0)).OverflowFloat(ovfFloat32); !ovf { t.Errorf("%v should overflow float32", ovfFloat32) } if ovf := V(float32(0)).OverflowFloat(-ovfFloat32); !ovf { t.Errorf("%v should overflow float32", -ovfFloat32) } maxInt32 := int64(0x7fffffff) if ovf := V(int32(0)).OverflowInt(maxInt32); ovf { t.Errorf("%v wrongly overflows int32", maxInt32) } if ovf := V(int32(0)).OverflowInt(-1 << 31); ovf { t.Errorf("%v wrongly overflows int32", -int64(1)<<31) } ovfInt32 := int64(1 << 31) if ovf := V(int32(0)).OverflowInt(ovfInt32); !ovf { t.Errorf("%v should overflow int32", ovfInt32) } maxUint32 := uint64(0xffffffff) if ovf := V(uint32(0)).OverflowUint(maxUint32); ovf { t.Errorf("%v wrongly overflows uint32", maxUint32) } ovfUint32 := uint64(1 << 32) if ovf := V(uint32(0)).OverflowUint(ovfUint32); !ovf { t.Errorf("%v should overflow uint32", ovfUint32) } } func checkSameType(t *testing.T, x Type, y any) { if x != TypeOf(y) || TypeOf(Zero(x).Interface()) != TypeOf(y) { t.Errorf("did not find preexisting type for %s (vs %s)", TypeOf(x), TypeOf(y)) } } func TestArrayOf(t *testing.T) { // check construction and use of type not in binary tests := []struct { n int value func(i int) any comparable bool want string }{ { n: 0, value: func(i int) any { type Tint int; return Tint(i) }, comparable: true, want: "[]", }, { n: 10, value: func(i int) any { type Tint int; return Tint(i) }, comparable: true, want: "[0 1 2 3 4 5 6 7 8 9]", }, { n: 10, value: func(i int) any { type Tfloat float64; return Tfloat(i) }, comparable: true, want: "[0 1 2 3 4 5 6 7 8 9]", }, { n: 10, value: func(i int) any { type Tstring string; return Tstring(strconv.Itoa(i)) }, comparable: true, want: "[0 1 2 3 4 5 6 7 8 9]", }, { n: 10, value: func(i int) any { type Tstruct struct{ V int }; return Tstruct{i} }, comparable: true, want: "[{0} {1} {2} {3} {4} {5} {6} {7} {8} {9}]", }, { n: 10, value: func(i int) any { type Tint int; return []Tint{Tint(i)} }, comparable: false, want: "[[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]]", }, { n: 10, value: func(i int) any { type Tint int; return [1]Tint{Tint(i)} }, comparable: true, want: "[[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]]", }, { n: 10, value: func(i int) any { type Tstruct struct{ V [1]int }; return Tstruct{[1]int{i}} }, comparable: true, want: "[{[0]} {[1]} {[2]} {[3]} {[4]} {[5]} {[6]} {[7]} {[8]} {[9]}]", }, { n: 10, value: func(i int) any { type Tstruct struct{ V []int }; return Tstruct{[]int{i}} }, comparable: false, want: "[{[0]} {[1]} {[2]} {[3]} {[4]} {[5]} {[6]} {[7]} {[8]} {[9]}]", }, { n: 10, value: func(i int) any { type TstructUV struct{ U, V int }; return TstructUV{i, i} }, comparable: true, want: "[{0 0} {1 1} {2 2} {3 3} {4 4} {5 5} {6 6} {7 7} {8 8} {9 9}]", }, { n: 10, value: func(i int) any { type TstructUV struct { U int V float64 } return TstructUV{i, float64(i)} }, comparable: true, want: "[{0 0} {1 1} {2 2} {3 3} {4 4} {5 5} {6 6} {7 7} {8 8} {9 9}]", }, } for _, table := range tests { at := ArrayOf(table.n, TypeOf(table.value(0))) v := New(at).Elem() vok := New(at).Elem() vnot := New(at).Elem() for i := 0; i < v.Len(); i++ { v.Index(i).Set(ValueOf(table.value(i))) vok.Index(i).Set(ValueOf(table.value(i))) j := i if i+1 == v.Len() { j = i + 1 } vnot.Index(i).Set(ValueOf(table.value(j))) // make it differ only by last element } s := fmt.Sprint(v.Interface()) if s != table.want { t.Errorf("constructed array = %s, want %s", s, table.want) } if table.comparable != at.Comparable() { t.Errorf("constructed array (%#v) is comparable=%v, want=%v", v.Interface(), at.Comparable(), table.comparable) } if table.comparable { if table.n > 0 { if DeepEqual(vnot.Interface(), v.Interface()) { t.Errorf( "arrays (%#v) compare ok (but should not)", v.Interface(), ) } } if !DeepEqual(vok.Interface(), v.Interface()) { t.Errorf( "arrays (%#v) compare NOT-ok (but should)", v.Interface(), ) } } } // check that type already in binary is found type T int checkSameType(t, ArrayOf(5, TypeOf(T(1))), [5]T{}) } func TestArrayOfGC(t *testing.T) { type T *uintptr tt := TypeOf(T(nil)) const n = 100 var x []any for i := 0; i < n; i++ { v := New(ArrayOf(n, tt)).Elem() for j := 0; j < v.Len(); j++ { p := new(uintptr) *p = uintptr(i*n + j) v.Index(j).Set(ValueOf(p).Convert(tt)) } x = append(x, v.Interface()) } runtime.GC() for i, xi := range x { v := ValueOf(xi) for j := 0; j < v.Len(); j++ { k := v.Index(j).Elem().Interface() if k != uintptr(i*n+j) { t.Errorf("lost x[%d][%d] = %d, want %d", i, j, k, i*n+j) } } } } func TestArrayOfAlg(t *testing.T) { at := ArrayOf(6, TypeOf(byte(0))) v1 := New(at).Elem() v2 := New(at).Elem() if v1.Interface() != v1.Interface() { t.Errorf("constructed array %v not equal to itself", v1.Interface()) } v1.Index(5).Set(ValueOf(byte(1))) if i1, i2 := v1.Interface(), v2.Interface(); i1 == i2 { t.Errorf("constructed arrays %v and %v should not be equal", i1, i2) } at = ArrayOf(6, TypeOf([]int(nil))) v1 = New(at).Elem() shouldPanic("", func() { _ = v1.Interface() == v1.Interface() }) } func TestArrayOfGenericAlg(t *testing.T) { at1 := ArrayOf(5, TypeOf(string(""))) at := ArrayOf(6, at1) v1 := New(at).Elem() v2 := New(at).Elem() if v1.Interface() != v1.Interface() { t.Errorf("constructed array %v not equal to itself", v1.Interface()) } v1.Index(0).Index(0).Set(ValueOf("abc")) v2.Index(0).Index(0).Set(ValueOf("efg")) if i1, i2 := v1.Interface(), v2.Interface(); i1 == i2 { t.Errorf("constructed arrays %v and %v should not be equal", i1, i2) } v1.Index(0).Index(0).Set(ValueOf("abc")) v2.Index(0).Index(0).Set(ValueOf((v1.Index(0).Index(0).String() + " ")[:3])) if i1, i2 := v1.Interface(), v2.Interface(); i1 != i2 { t.Errorf("constructed arrays %v and %v should be equal", i1, i2) } // Test hash m := MakeMap(MapOf(at, TypeOf(int(0)))) m.SetMapIndex(v1, ValueOf(1)) if i1, i2 := v1.Interface(), v2.Interface(); !m.MapIndex(v2).IsValid() { t.Errorf("constructed arrays %v and %v have different hashes", i1, i2) } } func TestArrayOfDirectIface(t *testing.T) { { type T [1]*byte i1 := Zero(TypeOf(T{})).Interface() v1 := ValueOf(&i1).Elem() p1 := v1.InterfaceData()[1] i2 := Zero(ArrayOf(1, PointerTo(TypeOf(int8(0))))).Interface() v2 := ValueOf(&i2).Elem() p2 := v2.InterfaceData()[1] if p1 != 0 { t.Errorf("got p1=%v. want=%v", p1, nil) } if p2 != 0 { t.Errorf("got p2=%v. want=%v", p2, nil) } } { type T [0]*byte i1 := Zero(TypeOf(T{})).Interface() v1 := ValueOf(&i1).Elem() p1 := v1.InterfaceData()[1] i2 := Zero(ArrayOf(0, PointerTo(TypeOf(int8(0))))).Interface() v2 := ValueOf(&i2).Elem() p2 := v2.InterfaceData()[1] if p1 == 0 { t.Errorf("got p1=%v. want=not-%v", p1, nil) } if p2 == 0 { t.Errorf("got p2=%v. want=not-%v", p2, nil) } } } // Ensure passing in negative lengths panics. // See https://golang.org/issue/43603 func TestArrayOfPanicOnNegativeLength(t *testing.T) { shouldPanic("reflect: negative length passed to ArrayOf", func() { ArrayOf(-1, TypeOf(byte(0))) }) } func TestSliceOf(t *testing.T) { // check construction and use of type not in binary type T int st := SliceOf(TypeOf(T(1))) if got, want := st.String(), "[]reflect_test.T"; got != want { t.Errorf("SliceOf(T(1)).String()=%q, want %q", got, want) } v := MakeSlice(st, 10, 10) runtime.GC() for i := 0; i < v.Len(); i++ { v.Index(i).Set(ValueOf(T(i))) runtime.GC() } s := fmt.Sprint(v.Interface()) want := "[0 1 2 3 4 5 6 7 8 9]" if s != want { t.Errorf("constructed slice = %s, want %s", s, want) } // check that type already in binary is found type T1 int checkSameType(t, SliceOf(TypeOf(T1(1))), []T1{}) } func TestSliceOverflow(t *testing.T) { // check that MakeSlice panics when size of slice overflows uint const S = 1e6 s := uint(S) l := (1<<(unsafe.Sizeof((*byte)(nil))*8)-1)/s + 1 if l*s >= s { t.Fatal("slice size does not overflow") } var x [S]byte st := SliceOf(TypeOf(x)) defer func() { err := recover() if err == nil { t.Fatal("slice overflow does not panic") } }() MakeSlice(st, int(l), int(l)) } func TestSliceOfGC(t *testing.T) { type T *uintptr tt := TypeOf(T(nil)) st := SliceOf(tt) const n = 100 var x []any for i := 0; i < n; i++ { v := MakeSlice(st, n, n) for j := 0; j < v.Len(); j++ { p := new(uintptr) *p = uintptr(i*n + j) v.Index(j).Set(ValueOf(p).Convert(tt)) } x = append(x, v.Interface()) } runtime.GC() for i, xi := range x { v := ValueOf(xi) for j := 0; j < v.Len(); j++ { k := v.Index(j).Elem().Interface() if k != uintptr(i*n+j) { t.Errorf("lost x[%d][%d] = %d, want %d", i, j, k, i*n+j) } } } } func TestStructOfFieldName(t *testing.T) { // invalid field name "1nvalid" shouldPanic("has invalid name", func() { StructOf([]StructField{ {Name: "Valid", Type: TypeOf("")}, {Name: "1nvalid", Type: TypeOf("")}, }) }) // invalid field name "+" shouldPanic("has invalid name", func() { StructOf([]StructField{ {Name: "Val1d", Type: TypeOf("")}, {Name: "+", Type: TypeOf("")}, }) }) // no field name shouldPanic("has no name", func() { StructOf([]StructField{ {Name: "", Type: TypeOf("")}, }) }) // verify creation of a struct with valid struct fields validFields := []StructField{ { Name: "φ", Type: TypeOf(""), }, { Name: "ValidName", Type: TypeOf(""), }, { Name: "Val1dNam5", Type: TypeOf(""), }, } validStruct := StructOf(validFields) const structStr = `struct { φ string; ValidName string; Val1dNam5 string }` if got, want := validStruct.String(), structStr; got != want { t.Errorf("StructOf(validFields).String()=%q, want %q", got, want) } } func TestStructOf(t *testing.T) { // check construction and use of type not in binary fields := []StructField{ { Name: "S", Tag: "s", Type: TypeOf(""), }, { Name: "X", Tag: "x", Type: TypeOf(byte(0)), }, { Name: "Y", Type: TypeOf(uint64(0)), }, { Name: "Z", Type: TypeOf([3]uint16{}), }, } st := StructOf(fields) v := New(st).Elem() runtime.GC() v.FieldByName("X").Set(ValueOf(byte(2))) v.FieldByIndex([]int{1}).Set(ValueOf(byte(1))) runtime.GC() s := fmt.Sprint(v.Interface()) want := `{ 1 0 [0 0 0]}` if s != want { t.Errorf("constructed struct = %s, want %s", s, want) } const stStr = `struct { S string "s"; X uint8 "x"; Y uint64; Z [3]uint16 }` if got, want := st.String(), stStr; got != want { t.Errorf("StructOf(fields).String()=%q, want %q", got, want) } // check the size, alignment and field offsets stt := TypeOf(struct { String string X byte Y uint64 Z [3]uint16 }{}) if st.Size() != stt.Size() { t.Errorf("constructed struct size = %v, want %v", st.Size(), stt.Size()) } if st.Align() != stt.Align() { t.Errorf("constructed struct align = %v, want %v", st.Align(), stt.Align()) } if st.FieldAlign() != stt.FieldAlign() { t.Errorf("constructed struct field align = %v, want %v", st.FieldAlign(), stt.FieldAlign()) } for i := 0; i < st.NumField(); i++ { o1 := st.Field(i).Offset o2 := stt.Field(i).Offset if o1 != o2 { t.Errorf("constructed struct field %v offset = %v, want %v", i, o1, o2) } } // Check size and alignment with a trailing zero-sized field. st = StructOf([]StructField{ { Name: "F1", Type: TypeOf(byte(0)), }, { Name: "F2", Type: TypeOf([0]*byte{}), }, }) stt = TypeOf(struct { G1 byte G2 [0]*byte }{}) if st.Size() != stt.Size() { t.Errorf("constructed zero-padded struct size = %v, want %v", st.Size(), stt.Size()) } if st.Align() != stt.Align() { t.Errorf("constructed zero-padded struct align = %v, want %v", st.Align(), stt.Align()) } if st.FieldAlign() != stt.FieldAlign() { t.Errorf("constructed zero-padded struct field align = %v, want %v", st.FieldAlign(), stt.FieldAlign()) } for i := 0; i < st.NumField(); i++ { o1 := st.Field(i).Offset o2 := stt.Field(i).Offset if o1 != o2 { t.Errorf("constructed zero-padded struct field %v offset = %v, want %v", i, o1, o2) } } // check duplicate names shouldPanic("duplicate field", func() { StructOf([]StructField{ {Name: "string", PkgPath: "p", Type: TypeOf("")}, {Name: "string", PkgPath: "p", Type: TypeOf("")}, }) }) shouldPanic("has no name", func() { StructOf([]StructField{ {Type: TypeOf("")}, {Name: "string", PkgPath: "p", Type: TypeOf("")}, }) }) shouldPanic("has no name", func() { StructOf([]StructField{ {Type: TypeOf("")}, {Type: TypeOf("")}, }) }) // check that type already in binary is found checkSameType(t, StructOf(fields[2:3]), struct{ Y uint64 }{}) // gccgo used to fail this test. type structFieldType any checkSameType(t, StructOf([]StructField{ { Name: "F", Type: TypeOf((*structFieldType)(nil)).Elem(), }, }), struct{ F structFieldType }{}) } func TestStructOfExportRules(t *testing.T) { type S1 struct{} type s2 struct{} type ΦType struct{} type φType struct{} testPanic := func(i int, mustPanic bool, f func()) { defer func() { err := recover() if err == nil && mustPanic { t.Errorf("test-%d did not panic", i) } if err != nil && !mustPanic { t.Errorf("test-%d panicked: %v\n", i, err) } }() f() } tests := []struct { field StructField mustPanic bool exported bool }{ { field: StructField{Name: "S1", Anonymous: true, Type: TypeOf(S1{})}, exported: true, }, { field: StructField{Name: "S1", Anonymous: true, Type: TypeOf((*S1)(nil))}, exported: true, }, { field: StructField{Name: "s2", Anonymous: true, Type: TypeOf(s2{})}, mustPanic: true, }, { field: StructField{Name: "s2", Anonymous: true, Type: TypeOf((*s2)(nil))}, mustPanic: true, }, { field: StructField{Name: "Name", Type: nil, PkgPath: ""}, mustPanic: true, }, { field: StructField{Name: "", Type: TypeOf(S1{}), PkgPath: ""}, mustPanic: true, }, { field: StructField{Name: "S1", Anonymous: true, Type: TypeOf(S1{}), PkgPath: "other/pkg"}, mustPanic: true, }, { field: StructField{Name: "S1", Anonymous: true, Type: TypeOf((*S1)(nil)), PkgPath: "other/pkg"}, mustPanic: true, }, { field: StructField{Name: "s2", Anonymous: true, Type: TypeOf(s2{}), PkgPath: "other/pkg"}, mustPanic: true, }, { field: StructField{Name: "s2", Anonymous: true, Type: TypeOf((*s2)(nil)), PkgPath: "other/pkg"}, mustPanic: true, }, { field: StructField{Name: "s2", Type: TypeOf(int(0)), PkgPath: "other/pkg"}, }, { field: StructField{Name: "s2", Type: TypeOf(int(0)), PkgPath: "other/pkg"}, }, { field: StructField{Name: "S", Type: TypeOf(S1{})}, exported: true, }, { field: StructField{Name: "S", Type: TypeOf((*S1)(nil))}, exported: true, }, { field: StructField{Name: "S", Type: TypeOf(s2{})}, exported: true, }, { field: StructField{Name: "S", Type: TypeOf((*s2)(nil))}, exported: true, }, { field: StructField{Name: "s", Type: TypeOf(S1{})}, mustPanic: true, }, { field: StructField{Name: "s", Type: TypeOf((*S1)(nil))}, mustPanic: true, }, { field: StructField{Name: "s", Type: TypeOf(s2{})}, mustPanic: true, }, { field: StructField{Name: "s", Type: TypeOf((*s2)(nil))}, mustPanic: true, }, { field: StructField{Name: "s", Type: TypeOf(S1{}), PkgPath: "other/pkg"}, }, { field: StructField{Name: "s", Type: TypeOf((*S1)(nil)), PkgPath: "other/pkg"}, }, { field: StructField{Name: "s", Type: TypeOf(s2{}), PkgPath: "other/pkg"}, }, { field: StructField{Name: "s", Type: TypeOf((*s2)(nil)), PkgPath: "other/pkg"}, }, { field: StructField{Name: "", Type: TypeOf(ΦType{})}, mustPanic: true, }, { field: StructField{Name: "", Type: TypeOf(φType{})}, mustPanic: true, }, { field: StructField{Name: "Φ", Type: TypeOf(0)}, exported: true, }, { field: StructField{Name: "φ", Type: TypeOf(0)}, exported: false, }, } for i, test := range tests { testPanic(i, test.mustPanic, func() { typ := StructOf([]StructField{test.field}) if typ == nil { t.Errorf("test-%d: error creating struct type", i) return } field := typ.Field(0) n := field.Name if n == "" { panic("field.Name must not be empty") } exported := token.IsExported(n) if exported != test.exported { t.Errorf("test-%d: got exported=%v want exported=%v", i, exported, test.exported) } if field.PkgPath != test.field.PkgPath { t.Errorf("test-%d: got PkgPath=%q want pkgPath=%q", i, field.PkgPath, test.field.PkgPath) } }) } } func TestStructOfGC(t *testing.T) { type T *uintptr tt := TypeOf(T(nil)) fields := []StructField{ {Name: "X", Type: tt}, {Name: "Y", Type: tt}, } st := StructOf(fields) const n = 10000 var x []any for i := 0; i < n; i++ { v := New(st).Elem() for j := 0; j < v.NumField(); j++ { p := new(uintptr) *p = uintptr(i*n + j) v.Field(j).Set(ValueOf(p).Convert(tt)) } x = append(x, v.Interface()) } runtime.GC() for i, xi := range x { v := ValueOf(xi) for j := 0; j < v.NumField(); j++ { k := v.Field(j).Elem().Interface() if k != uintptr(i*n+j) { t.Errorf("lost x[%d].%c = %d, want %d", i, "XY"[j], k, i*n+j) } } } } func TestStructOfAlg(t *testing.T) { st := StructOf([]StructField{{Name: "X", Tag: "x", Type: TypeOf(int(0))}}) v1 := New(st).Elem() v2 := New(st).Elem() if !DeepEqual(v1.Interface(), v1.Interface()) { t.Errorf("constructed struct %v not equal to itself", v1.Interface()) } v1.FieldByName("X").Set(ValueOf(int(1))) if i1, i2 := v1.Interface(), v2.Interface(); DeepEqual(i1, i2) { t.Errorf("constructed structs %v and %v should not be equal", i1, i2) } st = StructOf([]StructField{{Name: "X", Tag: "x", Type: TypeOf([]int(nil))}}) v1 = New(st).Elem() shouldPanic("", func() { _ = v1.Interface() == v1.Interface() }) } func TestStructOfGenericAlg(t *testing.T) { st1 := StructOf([]StructField{ {Name: "X", Tag: "x", Type: TypeOf(int64(0))}, {Name: "Y", Type: TypeOf(string(""))}, }) st := StructOf([]StructField{ {Name: "S0", Type: st1}, {Name: "S1", Type: st1}, }) tests := []struct { rt Type idx []int }{ { rt: st, idx: []int{0, 1}, }, { rt: st1, idx: []int{1}, }, { rt: StructOf( []StructField{ {Name: "XX", Type: TypeOf([0]int{})}, {Name: "YY", Type: TypeOf("")}, }, ), idx: []int{1}, }, { rt: StructOf( []StructField{ {Name: "XX", Type: TypeOf([0]int{})}, {Name: "YY", Type: TypeOf("")}, {Name: "ZZ", Type: TypeOf([2]int{})}, }, ), idx: []int{1}, }, { rt: StructOf( []StructField{ {Name: "XX", Type: TypeOf([1]int{})}, {Name: "YY", Type: TypeOf("")}, }, ), idx: []int{1}, }, { rt: StructOf( []StructField{ {Name: "XX", Type: TypeOf([1]int{})}, {Name: "YY", Type: TypeOf("")}, {Name: "ZZ", Type: TypeOf([1]int{})}, }, ), idx: []int{1}, }, { rt: StructOf( []StructField{ {Name: "XX", Type: TypeOf([2]int{})}, {Name: "YY", Type: TypeOf("")}, {Name: "ZZ", Type: TypeOf([2]int{})}, }, ), idx: []int{1}, }, { rt: StructOf( []StructField{ {Name: "XX", Type: TypeOf(int64(0))}, {Name: "YY", Type: TypeOf(byte(0))}, {Name: "ZZ", Type: TypeOf("")}, }, ), idx: []int{2}, }, { rt: StructOf( []StructField{ {Name: "XX", Type: TypeOf(int64(0))}, {Name: "YY", Type: TypeOf(int64(0))}, {Name: "ZZ", Type: TypeOf("")}, {Name: "AA", Type: TypeOf([1]int64{})}, }, ), idx: []int{2}, }, } for _, table := range tests { v1 := New(table.rt).Elem() v2 := New(table.rt).Elem() if !DeepEqual(v1.Interface(), v1.Interface()) { t.Errorf("constructed struct %v not equal to itself", v1.Interface()) } v1.FieldByIndex(table.idx).Set(ValueOf("abc")) v2.FieldByIndex(table.idx).Set(ValueOf("def")) if i1, i2 := v1.Interface(), v2.Interface(); DeepEqual(i1, i2) { t.Errorf("constructed structs %v and %v should not be equal", i1, i2) } abc := "abc" v1.FieldByIndex(table.idx).Set(ValueOf(abc)) val := "+" + abc + "-" v2.FieldByIndex(table.idx).Set(ValueOf(val[1:4])) if i1, i2 := v1.Interface(), v2.Interface(); !DeepEqual(i1, i2) { t.Errorf("constructed structs %v and %v should be equal", i1, i2) } // Test hash m := MakeMap(MapOf(table.rt, TypeOf(int(0)))) m.SetMapIndex(v1, ValueOf(1)) if i1, i2 := v1.Interface(), v2.Interface(); !m.MapIndex(v2).IsValid() { t.Errorf("constructed structs %#v and %#v have different hashes", i1, i2) } v2.FieldByIndex(table.idx).Set(ValueOf("abc")) if i1, i2 := v1.Interface(), v2.Interface(); !DeepEqual(i1, i2) { t.Errorf("constructed structs %v and %v should be equal", i1, i2) } if i1, i2 := v1.Interface(), v2.Interface(); !m.MapIndex(v2).IsValid() { t.Errorf("constructed structs %v and %v have different hashes", i1, i2) } } } func TestStructOfDirectIface(t *testing.T) { { type T struct{ X [1]*byte } i1 := Zero(TypeOf(T{})).Interface() v1 := ValueOf(&i1).Elem() p1 := v1.InterfaceData()[1] i2 := Zero(StructOf([]StructField{ { Name: "X", Type: ArrayOf(1, TypeOf((*int8)(nil))), }, })).Interface() v2 := ValueOf(&i2).Elem() p2 := v2.InterfaceData()[1] if p1 != 0 { t.Errorf("got p1=%v. want=%v", p1, nil) } if p2 != 0 { t.Errorf("got p2=%v. want=%v", p2, nil) } } { type T struct{ X [0]*byte } i1 := Zero(TypeOf(T{})).Interface() v1 := ValueOf(&i1).Elem() p1 := v1.InterfaceData()[1] i2 := Zero(StructOf([]StructField{ { Name: "X", Type: ArrayOf(0, TypeOf((*int8)(nil))), }, })).Interface() v2 := ValueOf(&i2).Elem() p2 := v2.InterfaceData()[1] if p1 == 0 { t.Errorf("got p1=%v. want=not-%v", p1, nil) } if p2 == 0 { t.Errorf("got p2=%v. want=not-%v", p2, nil) } } } type StructI int func (i StructI) Get() int { return int(i) } type StructIPtr int func (i *StructIPtr) Get() int { return int(*i) } func (i *StructIPtr) Set(v int) { *(*int)(i) = v } type SettableStruct struct { SettableField int } func (p *SettableStruct) Set(v int) { p.SettableField = v } type SettablePointer struct { SettableField *int } func (p *SettablePointer) Set(v int) { *p.SettableField = v } func TestStructOfWithInterface(t *testing.T) { const want = 42 type Iface interface { Get() int } type IfaceSet interface { Set(int) } tests := []struct { name string typ Type val Value impl bool }{ { name: "StructI", typ: TypeOf(StructI(want)), val: ValueOf(StructI(want)), impl: true, }, { name: "StructI", typ: PointerTo(TypeOf(StructI(want))), val: ValueOf(func() any { v := StructI(want) return &v }()), impl: true, }, { name: "StructIPtr", typ: PointerTo(TypeOf(StructIPtr(want))), val: ValueOf(func() any { v := StructIPtr(want) return &v }()), impl: true, }, { name: "StructIPtr", typ: TypeOf(StructIPtr(want)), val: ValueOf(StructIPtr(want)), impl: false, }, // { // typ: TypeOf((*Iface)(nil)).Elem(), // FIXME(sbinet): fix method.ifn/tfn // val: ValueOf(StructI(want)), // impl: true, // }, } for i, table := range tests { for j := 0; j < 2; j++ { var fields []StructField if j == 1 { fields = append(fields, StructField{ Name: "Dummy", PkgPath: "", Type: TypeOf(int(0)), }) } fields = append(fields, StructField{ Name: table.name, Anonymous: true, PkgPath: "", Type: table.typ, }) // We currently do not correctly implement methods // for embedded fields other than the first. // Therefore, for now, we expect those methods // to not exist. See issues 15924 and 20824. // When those issues are fixed, this test of panic // should be removed. if j == 1 && table.impl { func() { defer func() { if err := recover(); err == nil { t.Errorf("test-%d-%d did not panic", i, j) } }() _ = StructOf(fields) }() continue } rt := StructOf(fields) rv := New(rt).Elem() rv.Field(j).Set(table.val) if _, ok := rv.Interface().(Iface); ok != table.impl { if table.impl { t.Errorf("test-%d-%d: type=%v fails to implement Iface.\n", i, j, table.typ) } else { t.Errorf("test-%d-%d: type=%v should NOT implement Iface\n", i, j, table.typ) } continue } if !table.impl { continue } v := rv.Interface().(Iface).Get() if v != want { t.Errorf("test-%d-%d: x.Get()=%v. want=%v\n", i, j, v, want) } fct := rv.MethodByName("Get") out := fct.Call(nil) if !DeepEqual(out[0].Interface(), want) { t.Errorf("test-%d-%d: x.Get()=%v. want=%v\n", i, j, out[0].Interface(), want) } } } // Test an embedded nil pointer with pointer methods. fields := []StructField{{ Name: "StructIPtr", Anonymous: true, Type: PointerTo(TypeOf(StructIPtr(want))), }} rt := StructOf(fields) rv := New(rt).Elem() // This should panic since the pointer is nil. shouldPanic("", func() { rv.Interface().(IfaceSet).Set(want) }) // Test an embedded nil pointer to a struct with pointer methods. fields = []StructField{{ Name: "SettableStruct", Anonymous: true, Type: PointerTo(TypeOf(SettableStruct{})), }} rt = StructOf(fields) rv = New(rt).Elem() // This should panic since the pointer is nil. shouldPanic("", func() { rv.Interface().(IfaceSet).Set(want) }) // The behavior is different if there is a second field, // since now an interface value holds a pointer to the struct // rather than just holding a copy of the struct. fields = []StructField{ { Name: "SettableStruct", Anonymous: true, Type: PointerTo(TypeOf(SettableStruct{})), }, { Name: "EmptyStruct", Anonymous: true, Type: StructOf(nil), }, } // With the current implementation this is expected to panic. // Ideally it should work and we should be able to see a panic // if we call the Set method. shouldPanic("", func() { StructOf(fields) }) // Embed a field that can be stored directly in an interface, // with a second field. fields = []StructField{ { Name: "SettablePointer", Anonymous: true, Type: TypeOf(SettablePointer{}), }, { Name: "EmptyStruct", Anonymous: true, Type: StructOf(nil), }, } // With the current implementation this is expected to panic. // Ideally it should work and we should be able to call the // Set and Get methods. shouldPanic("", func() { StructOf(fields) }) } func TestStructOfTooManyFields(t *testing.T) { // Bug Fix: #25402 - this should not panic tt := StructOf([]StructField{ {Name: "Time", Type: TypeOf(time.Time{}), Anonymous: true}, }) if _, present := tt.MethodByName("After"); !present { t.Errorf("Expected method `After` to be found") } } func TestStructOfDifferentPkgPath(t *testing.T) { fields := []StructField{ { Name: "f1", PkgPath: "p1", Type: TypeOf(int(0)), }, { Name: "f2", PkgPath: "p2", Type: TypeOf(int(0)), }, } shouldPanic("different PkgPath", func() { StructOf(fields) }) } func TestStructOfTooLarge(t *testing.T) { t1 := TypeOf(byte(0)) t2 := TypeOf(int16(0)) t4 := TypeOf(int32(0)) t0 := ArrayOf(0, t1) // 2^64-3 sized type (or 2^32-3 on 32-bit archs) bigType := StructOf([]StructField{ {Name: "F1", Type: ArrayOf(int(^uintptr(0)>>1), t1)}, {Name: "F2", Type: ArrayOf(int(^uintptr(0)>>1-1), t1)}, }) type test struct { shouldPanic bool fields []StructField } tests := [...]test{ { shouldPanic: false, // 2^64-1, ok fields: []StructField{ {Name: "F1", Type: bigType}, {Name: "F2", Type: ArrayOf(2, t1)}, }, }, { shouldPanic: true, // overflow in total size fields: []StructField{ {Name: "F1", Type: bigType}, {Name: "F2", Type: ArrayOf(3, t1)}, }, }, { shouldPanic: true, // overflow while aligning F2 fields: []StructField{ {Name: "F1", Type: bigType}, {Name: "F2", Type: t4}, }, }, { shouldPanic: true, // overflow while adding trailing byte for zero-sized fields fields: []StructField{ {Name: "F1", Type: bigType}, {Name: "F2", Type: ArrayOf(2, t1)}, {Name: "F3", Type: t0}, }, }, { shouldPanic: true, // overflow while aligning total size fields: []StructField{ {Name: "F1", Type: t2}, {Name: "F2", Type: bigType}, }, }, } for i, tt := range tests { func() { defer func() { err := recover() if !tt.shouldPanic { if err != nil { t.Errorf("test %d should not panic, got %s", i, err) } return } if err == nil { t.Errorf("test %d expected to panic", i) return } s := fmt.Sprintf("%s", err) if s != "reflect.StructOf: struct size would exceed virtual address space" { t.Errorf("test %d wrong panic message: %s", i, s) return } }() _ = StructOf(tt.fields) }() } } func TestChanOf(t *testing.T) { // check construction and use of type not in binary type T string ct := ChanOf(BothDir, TypeOf(T(""))) v := MakeChan(ct, 2) runtime.GC() v.Send(ValueOf(T("hello"))) runtime.GC() v.Send(ValueOf(T("world"))) runtime.GC() sv1, _ := v.Recv() sv2, _ := v.Recv() s1 := sv1.String() s2 := sv2.String() if s1 != "hello" || s2 != "world" { t.Errorf("constructed chan: have %q, %q, want %q, %q", s1, s2, "hello", "world") } // check that type already in binary is found type T1 int checkSameType(t, ChanOf(BothDir, TypeOf(T1(1))), (chan T1)(nil)) // Check arrow token association in undefined chan types. var left chan<- chan T var right chan (<-chan T) tLeft := ChanOf(SendDir, ChanOf(BothDir, TypeOf(T("")))) tRight := ChanOf(BothDir, ChanOf(RecvDir, TypeOf(T("")))) if tLeft != TypeOf(left) { t.Errorf("chan<-chan: have %s, want %T", tLeft, left) } if tRight != TypeOf(right) { t.Errorf("chan<-chan: have %s, want %T", tRight, right) } } func TestChanOfDir(t *testing.T) { // check construction and use of type not in binary type T string crt := ChanOf(RecvDir, TypeOf(T(""))) cst := ChanOf(SendDir, TypeOf(T(""))) // check that type already in binary is found type T1 int checkSameType(t, ChanOf(RecvDir, TypeOf(T1(1))), (<-chan T1)(nil)) checkSameType(t, ChanOf(SendDir, TypeOf(T1(1))), (chan<- T1)(nil)) // check String form of ChanDir if crt.ChanDir().String() != "<-chan" { t.Errorf("chan dir: have %q, want %q", crt.ChanDir().String(), "<-chan") } if cst.ChanDir().String() != "chan<-" { t.Errorf("chan dir: have %q, want %q", cst.ChanDir().String(), "chan<-") } } func TestChanOfGC(t *testing.T) { done := make(chan bool, 1) go func() { select { case <-done: case <-time.After(5 * time.Second): panic("deadlock in TestChanOfGC") } }() defer func() { done <- true }() type T *uintptr tt := TypeOf(T(nil)) ct := ChanOf(BothDir, tt) // NOTE: The garbage collector handles allocated channels specially, // so we have to save pointers to channels in x; the pointer code will // use the gc info in the newly constructed chan type. const n = 100 var x []any for i := 0; i < n; i++ { v := MakeChan(ct, n) for j := 0; j < n; j++ { p := new(uintptr) *p = uintptr(i*n + j) v.Send(ValueOf(p).Convert(tt)) } pv := New(ct) pv.Elem().Set(v) x = append(x, pv.Interface()) } runtime.GC() for i, xi := range x { v := ValueOf(xi).Elem() for j := 0; j < n; j++ { pv, _ := v.Recv() k := pv.Elem().Interface() if k != uintptr(i*n+j) { t.Errorf("lost x[%d][%d] = %d, want %d", i, j, k, i*n+j) } } } } func TestMapOf(t *testing.T) { // check construction and use of type not in binary type K string type V float64 v := MakeMap(MapOf(TypeOf(K("")), TypeOf(V(0)))) runtime.GC() v.SetMapIndex(ValueOf(K("a")), ValueOf(V(1))) runtime.GC() s := fmt.Sprint(v.Interface()) want := "map[a:1]" if s != want { t.Errorf("constructed map = %s, want %s", s, want) } // check that type already in binary is found checkSameType(t, MapOf(TypeOf(V(0)), TypeOf(K(""))), map[V]K(nil)) // check that invalid key type panics shouldPanic("invalid key type", func() { MapOf(TypeOf((func())(nil)), TypeOf(false)) }) } func TestMapOfGCKeys(t *testing.T) { type T *uintptr tt := TypeOf(T(nil)) mt := MapOf(tt, TypeOf(false)) // NOTE: The garbage collector handles allocated maps specially, // so we have to save pointers to maps in x; the pointer code will // use the gc info in the newly constructed map type. const n = 100 var x []any for i := 0; i < n; i++ { v := MakeMap(mt) for j := 0; j < n; j++ { p := new(uintptr) *p = uintptr(i*n + j) v.SetMapIndex(ValueOf(p).Convert(tt), ValueOf(true)) } pv := New(mt) pv.Elem().Set(v) x = append(x, pv.Interface()) } runtime.GC() for i, xi := range x { v := ValueOf(xi).Elem() var out []int for _, kv := range v.MapKeys() { out = append(out, int(kv.Elem().Interface().(uintptr))) } sort.Ints(out) for j, k := range out { if k != i*n+j { t.Errorf("lost x[%d][%d] = %d, want %d", i, j, k, i*n+j) } } } } func TestMapOfGCValues(t *testing.T) { type T *uintptr tt := TypeOf(T(nil)) mt := MapOf(TypeOf(1), tt) // NOTE: The garbage collector handles allocated maps specially, // so we have to save pointers to maps in x; the pointer code will // use the gc info in the newly constructed map type. const n = 100 var x []any for i := 0; i < n; i++ { v := MakeMap(mt) for j := 0; j < n; j++ { p := new(uintptr) *p = uintptr(i*n + j) v.SetMapIndex(ValueOf(j), ValueOf(p).Convert(tt)) } pv := New(mt) pv.Elem().Set(v) x = append(x, pv.Interface()) } runtime.GC() for i, xi := range x { v := ValueOf(xi).Elem() for j := 0; j < n; j++ { k := v.MapIndex(ValueOf(j)).Elem().Interface().(uintptr) if k != uintptr(i*n+j) { t.Errorf("lost x[%d][%d] = %d, want %d", i, j, k, i*n+j) } } } } func TestTypelinksSorted(t *testing.T) { var last string for i, n := range TypeLinks() { if n < last { t.Errorf("typelinks not sorted: %q [%d] > %q [%d]", last, i-1, n, i) } last = n } } func TestFuncOf(t *testing.T) { // check construction and use of type not in binary type K string type V float64 fn := func(args []Value) []Value { if len(args) != 1 { t.Errorf("args == %v, want exactly one arg", args) } else if args[0].Type() != TypeOf(K("")) { t.Errorf("args[0] is type %v, want %v", args[0].Type(), TypeOf(K(""))) } else if args[0].String() != "gopher" { t.Errorf("args[0] = %q, want %q", args[0].String(), "gopher") } return []Value{ValueOf(V(3.14))} } v := MakeFunc(FuncOf([]Type{TypeOf(K(""))}, []Type{TypeOf(V(0))}, false), fn) outs := v.Call([]Value{ValueOf(K("gopher"))}) if len(outs) != 1 { t.Fatalf("v.Call returned %v, want exactly one result", outs) } else if outs[0].Type() != TypeOf(V(0)) { t.Fatalf("c.Call[0] is type %v, want %v", outs[0].Type(), TypeOf(V(0))) } f := outs[0].Float() if f != 3.14 { t.Errorf("constructed func returned %f, want %f", f, 3.14) } // check that types already in binary are found type T1 int testCases := []struct { in, out []Type variadic bool want any }{ {in: []Type{TypeOf(T1(0))}, want: (func(T1))(nil)}, {in: []Type{TypeOf(int(0))}, want: (func(int))(nil)}, {in: []Type{SliceOf(TypeOf(int(0)))}, variadic: true, want: (func(...int))(nil)}, {in: []Type{TypeOf(int(0))}, out: []Type{TypeOf(false)}, want: (func(int) bool)(nil)}, {in: []Type{TypeOf(int(0))}, out: []Type{TypeOf(false), TypeOf("")}, want: (func(int) (bool, string))(nil)}, } for _, tt := range testCases { checkSameType(t, FuncOf(tt.in, tt.out, tt.variadic), tt.want) } // check that variadic requires last element be a slice. FuncOf([]Type{TypeOf(1), TypeOf(""), SliceOf(TypeOf(false))}, nil, true) shouldPanic("must be slice", func() { FuncOf([]Type{TypeOf(0), TypeOf(""), TypeOf(false)}, nil, true) }) shouldPanic("must be slice", func() { FuncOf(nil, nil, true) }) //testcase for #54669 var in []Type for i := 0; i < 51; i++ { in = append(in, TypeOf(1)) } FuncOf(in, nil, false) } type R0 struct { *R1 *R2 *R3 *R4 } type R1 struct { *R5 *R6 *R7 *R8 } type R2 R1 type R3 R1 type R4 R1 type R5 struct { *R9 *R10 *R11 *R12 } type R6 R5 type R7 R5 type R8 R5 type R9 struct { *R13 *R14 *R15 *R16 } type R10 R9 type R11 R9 type R12 R9 type R13 struct { *R17 *R18 *R19 *R20 } type R14 R13 type R15 R13 type R16 R13 type R17 struct { *R21 *R22 *R23 *R24 } type R18 R17 type R19 R17 type R20 R17 type R21 struct { X int } type R22 R21 type R23 R21 type R24 R21 func TestEmbed(t *testing.T) { typ := TypeOf(R0{}) f, ok := typ.FieldByName("X") if ok { t.Fatalf(`FieldByName("X") should fail, returned %v`, f.Index) } } func TestAllocsInterfaceBig(t *testing.T) { if testing.Short() { t.Skip("skipping malloc count in short mode") } v := ValueOf(S{}) if allocs := testing.AllocsPerRun(100, func() { v.Interface() }); allocs > 0 { t.Error("allocs:", allocs) } } func TestAllocsInterfaceSmall(t *testing.T) { if testing.Short() { t.Skip("skipping malloc count in short mode") } v := ValueOf(int64(0)) if allocs := testing.AllocsPerRun(100, func() { v.Interface() }); allocs > 0 { t.Error("allocs:", allocs) } } // An exhaustive is a mechanism for writing exhaustive or stochastic tests. // The basic usage is: // // for x.Next() { // ... code using x.Maybe() or x.Choice(n) to create test cases ... // } // // Each iteration of the loop returns a different set of results, until all // possible result sets have been explored. It is okay for different code paths // to make different method call sequences on x, but there must be no // other source of non-determinism in the call sequences. // // When faced with a new decision, x chooses randomly. Future explorations // of that path will choose successive values for the result. Thus, stopping // the loop after a fixed number of iterations gives somewhat stochastic // testing. // // Example: // // for x.Next() { // v := make([]bool, x.Choose(4)) // for i := range v { // v[i] = x.Maybe() // } // fmt.Println(v) // } // // prints (in some order): // // [] // [false] // [true] // [false false] // [false true] // ... // [true true] // [false false false] // ... // [true true true] // [false false false false] // ... // [true true true true] type exhaustive struct { r *rand.Rand pos int last []choice } type choice struct { off int n int max int } func (x *exhaustive) Next() bool { if x.r == nil { x.r = rand.New(rand.NewSource(time.Now().UnixNano())) } x.pos = 0 if x.last == nil { x.last = []choice{} return true } for i := len(x.last) - 1; i >= 0; i-- { c := &x.last[i] if c.n+1 < c.max { c.n++ x.last = x.last[:i+1] return true } } return false } func (x *exhaustive) Choose(max int) int { if x.pos >= len(x.last) { x.last = append(x.last, choice{x.r.Intn(max), 0, max}) } c := &x.last[x.pos] x.pos++ if c.max != max { panic("inconsistent use of exhaustive tester") } return (c.n + c.off) % max } func (x *exhaustive) Maybe() bool { return x.Choose(2) == 1 } func GCFunc(args []Value) []Value { runtime.GC() return []Value{} } func TestReflectFuncTraceback(t *testing.T) { f := MakeFunc(TypeOf(func() {}), GCFunc) f.Call([]Value{}) } func TestReflectMethodTraceback(t *testing.T) { p := Point{3, 4} m := ValueOf(p).MethodByName("GCMethod") i := ValueOf(m.Interface()).Call([]Value{ValueOf(5)})[0].Int() if i != 8 { t.Errorf("Call returned %d; want 8", i) } } func TestSmallZero(t *testing.T) { type T [10]byte typ := TypeOf(T{}) if allocs := testing.AllocsPerRun(100, func() { Zero(typ) }); allocs > 0 { t.Errorf("Creating small zero values caused %f allocs, want 0", allocs) } } func TestBigZero(t *testing.T) { const size = 1 << 10 var v [size]byte z := Zero(ValueOf(v).Type()).Interface().([size]byte) for i := 0; i < size; i++ { if z[i] != 0 { t.Fatalf("Zero object not all zero, index %d", i) } } } func TestZeroSet(t *testing.T) { type T [16]byte type S struct { a uint64 T T b uint64 } v := S{ a: 0xaaaaaaaaaaaaaaaa, T: T{9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9}, b: 0xbbbbbbbbbbbbbbbb, } ValueOf(&v).Elem().Field(1).Set(Zero(TypeOf(T{}))) if v != (S{ a: 0xaaaaaaaaaaaaaaaa, b: 0xbbbbbbbbbbbbbbbb, }) { t.Fatalf("Setting a field to a Zero value didn't work") } } func TestFieldByIndexNil(t *testing.T) { type P struct { F int } type T struct { *P } v := ValueOf(T{}) v.FieldByName("P") // should be fine defer func() { if err := recover(); err == nil { t.Fatalf("no error") } else if !strings.Contains(fmt.Sprint(err), "nil pointer to embedded struct") { t.Fatalf(`err=%q, wanted error containing "nil pointer to embedded struct"`, err) } }() v.FieldByName("F") // should panic t.Fatalf("did not panic") } // Given // type Outer struct { // *Inner // ... // } // the compiler generates the implementation of (*Outer).M dispatching to the embedded Inner. // The implementation is logically: // func (p *Outer) M() { // (p.Inner).M() // } // but since the only change here is the replacement of one pointer receiver with another, // the actual generated code overwrites the original receiver with the p.Inner pointer and // then jumps to the M method expecting the *Inner receiver. // // During reflect.Value.Call, we create an argument frame and the associated data structures // to describe it to the garbage collector, populate the frame, call reflect.call to // run a function call using that frame, and then copy the results back out of the frame. // The reflect.call function does a memmove of the frame structure onto the // stack (to set up the inputs), runs the call, and the memmoves the stack back to // the frame structure (to preserve the outputs). // // Originally reflect.call did not distinguish inputs from outputs: both memmoves // were for the full stack frame. However, in the case where the called function was // one of these wrappers, the rewritten receiver is almost certainly a different type // than the original receiver. This is not a problem on the stack, where we use the // program counter to determine the type information and understand that // during (*Outer).M the receiver is an *Outer while during (*Inner).M the receiver in the same // memory word is now an *Inner. But in the statically typed argument frame created // by reflect, the receiver is always an *Outer. Copying the modified receiver pointer // off the stack into the frame will store an *Inner there, and then if a garbage collection // happens to scan that argument frame before it is discarded, it will scan the *Inner // memory as if it were an *Outer. If the two have different memory layouts, the // collection will interpret the memory incorrectly. // // One such possible incorrect interpretation is to treat two arbitrary memory words // (Inner.P1 and Inner.P2 below) as an interface (Outer.R below). Because interpreting // an interface requires dereferencing the itab word, the misinterpretation will try to // deference Inner.P1, causing a crash during garbage collection. // // This came up in a real program in issue 7725. type Outer struct { *Inner R io.Reader } type Inner struct { X *Outer P1 uintptr P2 uintptr } func (pi *Inner) M() { // Clear references to pi so that the only way the // garbage collection will find the pointer is in the // argument frame, typed as a *Outer. pi.X.Inner = nil // Set up an interface value that will cause a crash. // P1 = 1 is a non-zero, so the interface looks non-nil. // P2 = pi ensures that the data word points into the // allocated heap; if not the collection skips the interface // value as irrelevant, without dereferencing P1. pi.P1 = 1 pi.P2 = uintptr(unsafe.Pointer(pi)) } func TestCallMethodJump(t *testing.T) { // In reflect.Value.Call, trigger a garbage collection after reflect.call // returns but before the args frame has been discarded. // This is a little clumsy but makes the failure repeatable. *CallGC = true p := &Outer{Inner: new(Inner)} p.Inner.X = p ValueOf(p).Method(0).Call(nil) // Stop garbage collecting during reflect.call. *CallGC = false } func TestCallArgLive(t *testing.T) { type T struct{ X, Y *string } // pointerful aggregate F := func(t T) { *t.X = "ok" } // In reflect.Value.Call, trigger a garbage collection in reflect.call // between marshaling argument and the actual call. *CallGC = true x := new(string) runtime.SetFinalizer(x, func(p *string) { if *p != "ok" { t.Errorf("x dead prematurely") } }) v := T{x, nil} ValueOf(F).Call([]Value{ValueOf(v)}) // Stop garbage collecting during reflect.call. *CallGC = false } func TestMakeFuncStackCopy(t *testing.T) { target := func(in []Value) []Value { runtime.GC() useStack(16) return []Value{ValueOf(9)} } var concrete func(*int, int) int fn := MakeFunc(ValueOf(concrete).Type(), target) ValueOf(&concrete).Elem().Set(fn) x := concrete(nil, 7) if x != 9 { t.Errorf("have %#q want 9", x) } } // use about n KB of stack func useStack(n int) { if n == 0 { return } var b [1024]byte // makes frame about 1KB useStack(n - 1 + int(b[99])) } type Impl struct{} func (Impl) F() {} func TestValueString(t *testing.T) { rv := ValueOf(Impl{}) if rv.String() != "" { t.Errorf("ValueOf(Impl{}).String() = %q, want %q", rv.String(), "") } method := rv.Method(0) if method.String() != "" { t.Errorf("ValueOf(Impl{}).Method(0).String() = %q, want %q", method.String(), "") } } func TestInvalid(t *testing.T) { // Used to have inconsistency between IsValid() and Kind() != Invalid. type T struct{ v any } v := ValueOf(T{}).Field(0) if v.IsValid() != true || v.Kind() != Interface { t.Errorf("field: IsValid=%v, Kind=%v, want true, Interface", v.IsValid(), v.Kind()) } v = v.Elem() if v.IsValid() != false || v.Kind() != Invalid { t.Errorf("field elem: IsValid=%v, Kind=%v, want false, Invalid", v.IsValid(), v.Kind()) } } // Issue 8917. func TestLargeGCProg(t *testing.T) { fv := ValueOf(func([256]*byte) {}) fv.Call([]Value{ValueOf([256]*byte{})}) } func fieldIndexRecover(t Type, i int) (recovered any) { defer func() { recovered = recover() }() t.Field(i) return } // Issue 15046. func TestTypeFieldOutOfRangePanic(t *testing.T) { typ := TypeOf(struct{ X int }{10}) testIndices := [...]struct { i int mustPanic bool }{ 0: {-2, true}, 1: {0, false}, 2: {1, true}, 3: {1 << 10, true}, } for i, tt := range testIndices { recoveredErr := fieldIndexRecover(typ, tt.i) if tt.mustPanic { if recoveredErr == nil { t.Errorf("#%d: fieldIndex %d expected to panic", i, tt.i) } } else { if recoveredErr != nil { t.Errorf("#%d: got err=%v, expected no panic", i, recoveredErr) } } } } // Issue 9179. func TestCallGC(t *testing.T) { f := func(a, b, c, d, e string) { } g := func(in []Value) []Value { runtime.GC() return nil } typ := ValueOf(f).Type() f2 := MakeFunc(typ, g).Interface().(func(string, string, string, string, string)) f2("four", "five5", "six666", "seven77", "eight888") } // Issue 18635 (function version). func TestKeepFuncLive(t *testing.T) { // Test that we keep makeFuncImpl live as long as it is // referenced on the stack. typ := TypeOf(func(i int) {}) var f, g func(in []Value) []Value f = func(in []Value) []Value { clobber() i := int(in[0].Int()) if i > 0 { // We can't use Value.Call here because // runtime.call* will keep the makeFuncImpl // alive. However, by converting it to an // interface value and calling that, // reflect.callReflect is the only thing that // can keep the makeFuncImpl live. // // Alternate between f and g so that if we do // reuse the memory prematurely it's more // likely to get obviously corrupted. MakeFunc(typ, g).Interface().(func(i int))(i - 1) } return nil } g = func(in []Value) []Value { clobber() i := int(in[0].Int()) MakeFunc(typ, f).Interface().(func(i int))(i) return nil } MakeFunc(typ, f).Call([]Value{ValueOf(10)}) } type UnExportedFirst int func (i UnExportedFirst) ΦExported() {} func (i UnExportedFirst) unexported() {} // Issue 21177 func TestMethodByNameUnExportedFirst(t *testing.T) { defer func() { if recover() != nil { t.Errorf("should not panic") } }() typ := TypeOf(UnExportedFirst(0)) m, _ := typ.MethodByName("ΦExported") if m.Name != "ΦExported" { t.Errorf("got %s, expected ΦExported", m.Name) } } // Issue 18635 (method version). type KeepMethodLive struct{} func (k KeepMethodLive) Method1(i int) { clobber() if i > 0 { ValueOf(k).MethodByName("Method2").Interface().(func(i int))(i - 1) } } func (k KeepMethodLive) Method2(i int) { clobber() ValueOf(k).MethodByName("Method1").Interface().(func(i int))(i) } func TestKeepMethodLive(t *testing.T) { // Test that we keep methodValue live as long as it is // referenced on the stack. KeepMethodLive{}.Method1(10) } // clobber tries to clobber unreachable memory. func clobber() { runtime.GC() for i := 1; i < 32; i++ { for j := 0; j < 10; j++ { obj := make([]*byte, i) sink = obj } } runtime.GC() } func TestFuncLayout(t *testing.T) { align := func(x uintptr) uintptr { return (x + goarch.PtrSize - 1) &^ (goarch.PtrSize - 1) } var r []byte if goarch.PtrSize == 4 { r = []byte{0, 0, 0, 1} } else { r = []byte{0, 0, 1} } type S struct { a, b uintptr c, d *byte } type test struct { rcvr, typ Type size, argsize, retOffset uintptr stack, gc, inRegs, outRegs []byte // pointer bitmap: 1 is pointer, 0 is scalar intRegs, floatRegs int floatRegSize uintptr } tests := []test{ { typ: ValueOf(func(a, b string) string { return "" }).Type(), size: 6 * goarch.PtrSize, argsize: 4 * goarch.PtrSize, retOffset: 4 * goarch.PtrSize, stack: []byte{1, 0, 1, 0, 1}, gc: []byte{1, 0, 1, 0, 1}, }, { typ: ValueOf(func(a, b, c uint32, p *byte, d uint16) {}).Type(), size: align(align(3*4) + goarch.PtrSize + 2), argsize: align(3*4) + goarch.PtrSize + 2, retOffset: align(align(3*4) + goarch.PtrSize + 2), stack: r, gc: r, }, { typ: ValueOf(func(a map[int]int, b uintptr, c any) {}).Type(), size: 4 * goarch.PtrSize, argsize: 4 * goarch.PtrSize, retOffset: 4 * goarch.PtrSize, stack: []byte{1, 0, 1, 1}, gc: []byte{1, 0, 1, 1}, }, { typ: ValueOf(func(a S) {}).Type(), size: 4 * goarch.PtrSize, argsize: 4 * goarch.PtrSize, retOffset: 4 * goarch.PtrSize, stack: []byte{0, 0, 1, 1}, gc: []byte{0, 0, 1, 1}, }, { rcvr: ValueOf((*byte)(nil)).Type(), typ: ValueOf(func(a uintptr, b *int) {}).Type(), size: 3 * goarch.PtrSize, argsize: 3 * goarch.PtrSize, retOffset: 3 * goarch.PtrSize, stack: []byte{1, 0, 1}, gc: []byte{1, 0, 1}, }, { typ: ValueOf(func(a uintptr) {}).Type(), size: goarch.PtrSize, argsize: goarch.PtrSize, retOffset: goarch.PtrSize, stack: []byte{}, gc: []byte{}, }, { typ: ValueOf(func() uintptr { return 0 }).Type(), size: goarch.PtrSize, argsize: 0, retOffset: 0, stack: []byte{}, gc: []byte{}, }, { rcvr: ValueOf(uintptr(0)).Type(), typ: ValueOf(func(a uintptr) {}).Type(), size: 2 * goarch.PtrSize, argsize: 2 * goarch.PtrSize, retOffset: 2 * goarch.PtrSize, stack: []byte{1}, gc: []byte{1}, // Note: this one is tricky, as the receiver is not a pointer. But we // pass the receiver by reference to the autogenerated pointer-receiver // version of the function. }, // TODO(mknyszek): Add tests for non-zero register count. } for _, lt := range tests { name := lt.typ.String() if lt.rcvr != nil { name = lt.rcvr.String() + "." + name } t.Run(name, func(t *testing.T) { defer SetArgRegs(SetArgRegs(lt.intRegs, lt.floatRegs, lt.floatRegSize)) typ, argsize, retOffset, stack, gc, inRegs, outRegs, ptrs := FuncLayout(lt.typ, lt.rcvr) if typ.Size() != lt.size { t.Errorf("funcLayout(%v, %v).size=%d, want %d", lt.typ, lt.rcvr, typ.Size(), lt.size) } if argsize != lt.argsize { t.Errorf("funcLayout(%v, %v).argsize=%d, want %d", lt.typ, lt.rcvr, argsize, lt.argsize) } if retOffset != lt.retOffset { t.Errorf("funcLayout(%v, %v).retOffset=%d, want %d", lt.typ, lt.rcvr, retOffset, lt.retOffset) } if !bytes.Equal(stack, lt.stack) { t.Errorf("funcLayout(%v, %v).stack=%v, want %v", lt.typ, lt.rcvr, stack, lt.stack) } if !bytes.Equal(gc, lt.gc) { t.Errorf("funcLayout(%v, %v).gc=%v, want %v", lt.typ, lt.rcvr, gc, lt.gc) } if !bytes.Equal(inRegs, lt.inRegs) { t.Errorf("funcLayout(%v, %v).inRegs=%v, want %v", lt.typ, lt.rcvr, inRegs, lt.inRegs) } if !bytes.Equal(outRegs, lt.outRegs) { t.Errorf("funcLayout(%v, %v).outRegs=%v, want %v", lt.typ, lt.rcvr, outRegs, lt.outRegs) } if ptrs && len(stack) == 0 || !ptrs && len(stack) > 0 { t.Errorf("funcLayout(%v, %v) pointers flag=%v, want %v", lt.typ, lt.rcvr, ptrs, !ptrs) } }) } } // trimBitmap removes trailing 0 elements from b and returns the result. func trimBitmap(b []byte) []byte { for len(b) > 0 && b[len(b)-1] == 0 { b = b[:len(b)-1] } return b } func verifyGCBits(t *testing.T, typ Type, bits []byte) { heapBits := GCBits(New(typ).Interface()) // Trim scalars at the end, as bits might end in zero, // e.g. with rep(2, lit(1, 0)). bits = trimBitmap(bits) if bytes.HasPrefix(heapBits, bits) { // Just the prefix matching is OK. // // The Go runtime's pointer/scalar iterator generates pointers beyond // the size of the type, up to the size of the size class. This space // is safe for the GC to scan since it's zero, and GCBits checks to // make sure that's true. But we need to handle the fact that the bitmap // may be larger than we expect. return } _, _, line, _ := runtime.Caller(1) t.Errorf("line %d: heapBits incorrect for %v\nhave %v\nwant %v", line, typ, heapBits, bits) } func verifyGCBitsSlice(t *testing.T, typ Type, cap int, bits []byte) { // Creating a slice causes the runtime to repeat a bitmap, // which exercises a different path from making the compiler // repeat a bitmap for a small array or executing a repeat in // a GC program. val := MakeSlice(typ, 0, cap) data := NewAt(typ.Elem(), val.UnsafePointer()) heapBits := GCBits(data.Interface()) // Repeat the bitmap for the slice size, trimming scalars in // the last element. bits = trimBitmap(rep(cap, bits)) if bytes.Equal(heapBits, bits) { return } if len(heapBits) > len(bits) && bytes.Equal(heapBits[:len(bits)], bits) { // Just the prefix matching is OK. return } _, _, line, _ := runtime.Caller(1) t.Errorf("line %d: heapBits incorrect for make(%v, 0, %v)\nhave %v\nwant %v", line, typ, cap, heapBits, bits) } func TestGCBits(t *testing.T) { verifyGCBits(t, TypeOf((*byte)(nil)), []byte{1}) // Building blocks for types seen by the compiler (like [2]Xscalar). // The compiler will create the type structures for the derived types, // including their GC metadata. type Xscalar struct{ x uintptr } type Xptr struct{ x *byte } type Xptrscalar struct { *byte uintptr } type Xscalarptr struct { uintptr *byte } type Xbigptrscalar struct { _ [100]*byte _ [100]uintptr } var Tscalar, Tint64, Tptr, Tscalarptr, Tptrscalar, Tbigptrscalar Type { // Building blocks for types constructed by reflect. // This code is in a separate block so that code below // cannot accidentally refer to these. // The compiler must NOT see types derived from these // (for example, [2]Scalar must NOT appear in the program), // or else reflect will use it instead of having to construct one. // The goal is to test the construction. type Scalar struct{ x uintptr } type Ptr struct{ x *byte } type Ptrscalar struct { *byte uintptr } type Scalarptr struct { uintptr *byte } type Bigptrscalar struct { _ [100]*byte _ [100]uintptr } type Int64 int64 Tscalar = TypeOf(Scalar{}) Tint64 = TypeOf(Int64(0)) Tptr = TypeOf(Ptr{}) Tscalarptr = TypeOf(Scalarptr{}) Tptrscalar = TypeOf(Ptrscalar{}) Tbigptrscalar = TypeOf(Bigptrscalar{}) } empty := []byte{} verifyGCBits(t, TypeOf(Xscalar{}), empty) verifyGCBits(t, Tscalar, empty) verifyGCBits(t, TypeOf(Xptr{}), lit(1)) verifyGCBits(t, Tptr, lit(1)) verifyGCBits(t, TypeOf(Xscalarptr{}), lit(0, 1)) verifyGCBits(t, Tscalarptr, lit(0, 1)) verifyGCBits(t, TypeOf(Xptrscalar{}), lit(1)) verifyGCBits(t, Tptrscalar, lit(1)) verifyGCBits(t, TypeOf([0]Xptr{}), empty) verifyGCBits(t, ArrayOf(0, Tptr), empty) verifyGCBits(t, TypeOf([1]Xptrscalar{}), lit(1)) verifyGCBits(t, ArrayOf(1, Tptrscalar), lit(1)) verifyGCBits(t, TypeOf([2]Xscalar{}), empty) verifyGCBits(t, ArrayOf(2, Tscalar), empty) verifyGCBits(t, TypeOf([10000]Xscalar{}), empty) verifyGCBits(t, ArrayOf(10000, Tscalar), empty) verifyGCBits(t, TypeOf([2]Xptr{}), lit(1, 1)) verifyGCBits(t, ArrayOf(2, Tptr), lit(1, 1)) verifyGCBits(t, TypeOf([10000]Xptr{}), rep(10000, lit(1))) verifyGCBits(t, ArrayOf(10000, Tptr), rep(10000, lit(1))) verifyGCBits(t, TypeOf([2]Xscalarptr{}), lit(0, 1, 0, 1)) verifyGCBits(t, ArrayOf(2, Tscalarptr), lit(0, 1, 0, 1)) verifyGCBits(t, TypeOf([10000]Xscalarptr{}), rep(10000, lit(0, 1))) verifyGCBits(t, ArrayOf(10000, Tscalarptr), rep(10000, lit(0, 1))) verifyGCBits(t, TypeOf([2]Xptrscalar{}), lit(1, 0, 1)) verifyGCBits(t, ArrayOf(2, Tptrscalar), lit(1, 0, 1)) verifyGCBits(t, TypeOf([10000]Xptrscalar{}), rep(10000, lit(1, 0))) verifyGCBits(t, ArrayOf(10000, Tptrscalar), rep(10000, lit(1, 0))) verifyGCBits(t, TypeOf([1][10000]Xptrscalar{}), rep(10000, lit(1, 0))) verifyGCBits(t, ArrayOf(1, ArrayOf(10000, Tptrscalar)), rep(10000, lit(1, 0))) verifyGCBits(t, TypeOf([2][10000]Xptrscalar{}), rep(2*10000, lit(1, 0))) verifyGCBits(t, ArrayOf(2, ArrayOf(10000, Tptrscalar)), rep(2*10000, lit(1, 0))) verifyGCBits(t, TypeOf([4]Xbigptrscalar{}), join(rep(3, join(rep(100, lit(1)), rep(100, lit(0)))), rep(100, lit(1)))) verifyGCBits(t, ArrayOf(4, Tbigptrscalar), join(rep(3, join(rep(100, lit(1)), rep(100, lit(0)))), rep(100, lit(1)))) verifyGCBitsSlice(t, TypeOf([]Xptr{}), 0, empty) verifyGCBitsSlice(t, SliceOf(Tptr), 0, empty) verifyGCBitsSlice(t, TypeOf([]Xptrscalar{}), 1, lit(1)) verifyGCBitsSlice(t, SliceOf(Tptrscalar), 1, lit(1)) verifyGCBitsSlice(t, TypeOf([]Xscalar{}), 2, lit(0)) verifyGCBitsSlice(t, SliceOf(Tscalar), 2, lit(0)) verifyGCBitsSlice(t, TypeOf([]Xscalar{}), 10000, lit(0)) verifyGCBitsSlice(t, SliceOf(Tscalar), 10000, lit(0)) verifyGCBitsSlice(t, TypeOf([]Xptr{}), 2, lit(1)) verifyGCBitsSlice(t, SliceOf(Tptr), 2, lit(1)) verifyGCBitsSlice(t, TypeOf([]Xptr{}), 10000, lit(1)) verifyGCBitsSlice(t, SliceOf(Tptr), 10000, lit(1)) verifyGCBitsSlice(t, TypeOf([]Xscalarptr{}), 2, lit(0, 1)) verifyGCBitsSlice(t, SliceOf(Tscalarptr), 2, lit(0, 1)) verifyGCBitsSlice(t, TypeOf([]Xscalarptr{}), 10000, lit(0, 1)) verifyGCBitsSlice(t, SliceOf(Tscalarptr), 10000, lit(0, 1)) verifyGCBitsSlice(t, TypeOf([]Xptrscalar{}), 2, lit(1, 0)) verifyGCBitsSlice(t, SliceOf(Tptrscalar), 2, lit(1, 0)) verifyGCBitsSlice(t, TypeOf([]Xptrscalar{}), 10000, lit(1, 0)) verifyGCBitsSlice(t, SliceOf(Tptrscalar), 10000, lit(1, 0)) verifyGCBitsSlice(t, TypeOf([][10000]Xptrscalar{}), 1, rep(10000, lit(1, 0))) verifyGCBitsSlice(t, SliceOf(ArrayOf(10000, Tptrscalar)), 1, rep(10000, lit(1, 0))) verifyGCBitsSlice(t, TypeOf([][10000]Xptrscalar{}), 2, rep(10000, lit(1, 0))) verifyGCBitsSlice(t, SliceOf(ArrayOf(10000, Tptrscalar)), 2, rep(10000, lit(1, 0))) verifyGCBitsSlice(t, TypeOf([]Xbigptrscalar{}), 4, join(rep(100, lit(1)), rep(100, lit(0)))) verifyGCBitsSlice(t, SliceOf(Tbigptrscalar), 4, join(rep(100, lit(1)), rep(100, lit(0)))) verifyGCBits(t, TypeOf((chan [100]Xscalar)(nil)), lit(1)) verifyGCBits(t, ChanOf(BothDir, ArrayOf(100, Tscalar)), lit(1)) verifyGCBits(t, TypeOf((func([10000]Xscalarptr))(nil)), lit(1)) verifyGCBits(t, FuncOf([]Type{ArrayOf(10000, Tscalarptr)}, nil, false), lit(1)) verifyGCBits(t, TypeOf((map[[10000]Xscalarptr]Xscalar)(nil)), lit(1)) verifyGCBits(t, MapOf(ArrayOf(10000, Tscalarptr), Tscalar), lit(1)) verifyGCBits(t, TypeOf((*[10000]Xscalar)(nil)), lit(1)) verifyGCBits(t, PointerTo(ArrayOf(10000, Tscalar)), lit(1)) verifyGCBits(t, TypeOf(([][10000]Xscalar)(nil)), lit(1)) verifyGCBits(t, SliceOf(ArrayOf(10000, Tscalar)), lit(1)) hdr := make([]byte, bucketCount/goarch.PtrSize) verifyMapBucket := func(t *testing.T, k, e Type, m any, want []byte) { verifyGCBits(t, MapBucketOf(k, e), want) verifyGCBits(t, CachedBucketOf(TypeOf(m)), want) } verifyMapBucket(t, Tscalar, Tptr, map[Xscalar]Xptr(nil), join(hdr, rep(bucketCount, lit(0)), rep(bucketCount, lit(1)), lit(1))) verifyMapBucket(t, Tscalarptr, Tptr, map[Xscalarptr]Xptr(nil), join(hdr, rep(bucketCount, lit(0, 1)), rep(bucketCount, lit(1)), lit(1))) verifyMapBucket(t, Tint64, Tptr, map[int64]Xptr(nil), join(hdr, rep(bucketCount, rep(8/goarch.PtrSize, lit(0))), rep(bucketCount, lit(1)), lit(1))) verifyMapBucket(t, Tscalar, Tscalar, map[Xscalar]Xscalar(nil), empty) verifyMapBucket(t, ArrayOf(2, Tscalarptr), ArrayOf(3, Tptrscalar), map[[2]Xscalarptr][3]Xptrscalar(nil), join(hdr, rep(bucketCount*2, lit(0, 1)), rep(bucketCount*3, lit(1, 0)), lit(1))) verifyMapBucket(t, ArrayOf(64/goarch.PtrSize, Tscalarptr), ArrayOf(64/goarch.PtrSize, Tptrscalar), map[[64 / goarch.PtrSize]Xscalarptr][64 / goarch.PtrSize]Xptrscalar(nil), join(hdr, rep(bucketCount*64/goarch.PtrSize, lit(0, 1)), rep(bucketCount*64/goarch.PtrSize, lit(1, 0)), lit(1))) verifyMapBucket(t, ArrayOf(64/goarch.PtrSize+1, Tscalarptr), ArrayOf(64/goarch.PtrSize, Tptrscalar), map[[64/goarch.PtrSize + 1]Xscalarptr][64 / goarch.PtrSize]Xptrscalar(nil), join(hdr, rep(bucketCount, lit(1)), rep(bucketCount*64/goarch.PtrSize, lit(1, 0)), lit(1))) verifyMapBucket(t, ArrayOf(64/goarch.PtrSize, Tscalarptr), ArrayOf(64/goarch.PtrSize+1, Tptrscalar), map[[64 / goarch.PtrSize]Xscalarptr][64/goarch.PtrSize + 1]Xptrscalar(nil), join(hdr, rep(bucketCount*64/goarch.PtrSize, lit(0, 1)), rep(bucketCount, lit(1)), lit(1))) verifyMapBucket(t, ArrayOf(64/goarch.PtrSize+1, Tscalarptr), ArrayOf(64/goarch.PtrSize+1, Tptrscalar), map[[64/goarch.PtrSize + 1]Xscalarptr][64/goarch.PtrSize + 1]Xptrscalar(nil), join(hdr, rep(bucketCount, lit(1)), rep(bucketCount, lit(1)), lit(1))) } func rep(n int, b []byte) []byte { return bytes.Repeat(b, n) } func join(b ...[]byte) []byte { return bytes.Join(b, nil) } func lit(x ...byte) []byte { return x } func TestTypeOfTypeOf(t *testing.T) { // Check that all the type constructors return concrete *rtype implementations. // It's difficult to test directly because the reflect package is only at arm's length. // The easiest thing to do is just call a function that crashes if it doesn't get an *rtype. check := func(name string, typ Type) { if underlying := TypeOf(typ).String(); underlying != "*reflect.rtype" { t.Errorf("%v returned %v, not *reflect.rtype", name, underlying) } } type T struct{ int } check("TypeOf", TypeOf(T{})) check("ArrayOf", ArrayOf(10, TypeOf(T{}))) check("ChanOf", ChanOf(BothDir, TypeOf(T{}))) check("FuncOf", FuncOf([]Type{TypeOf(T{})}, nil, false)) check("MapOf", MapOf(TypeOf(T{}), TypeOf(T{}))) check("PtrTo", PointerTo(TypeOf(T{}))) check("SliceOf", SliceOf(TypeOf(T{}))) } type XM struct{ _ bool } func (*XM) String() string { return "" } func TestPtrToMethods(t *testing.T) { var y struct{ XM } yp := New(TypeOf(y)).Interface() _, ok := yp.(fmt.Stringer) if !ok { t.Fatal("does not implement Stringer, but should") } } func TestMapAlloc(t *testing.T) { m := ValueOf(make(map[int]int, 10)) k := ValueOf(5) v := ValueOf(7) allocs := testing.AllocsPerRun(100, func() { m.SetMapIndex(k, v) }) if allocs > 0.5 { t.Errorf("allocs per map assignment: want 0 got %f", allocs) } const size = 1000 tmp := 0 val := ValueOf(&tmp).Elem() allocs = testing.AllocsPerRun(100, func() { mv := MakeMapWithSize(TypeOf(map[int]int{}), size) // Only adding half of the capacity to not trigger re-allocations due too many overloaded buckets. for i := 0; i < size/2; i++ { val.SetInt(int64(i)) mv.SetMapIndex(val, val) } }) if allocs > 10 { t.Errorf("allocs per map assignment: want at most 10 got %f", allocs) } // Empirical testing shows that with capacity hint single run will trigger 3 allocations and without 91. I set // the threshold to 10, to not make it overly brittle if something changes in the initial allocation of the // map, but to still catch a regression where we keep re-allocating in the hashmap as new entries are added. } func TestChanAlloc(t *testing.T) { // Note: for a chan int, the return Value must be allocated, so we // use a chan *int instead. c := ValueOf(make(chan *int, 1)) v := ValueOf(new(int)) allocs := testing.AllocsPerRun(100, func() { c.Send(v) _, _ = c.Recv() }) if allocs < 0.5 || allocs > 1.5 { t.Errorf("allocs per chan send/recv: want 1 got %f", allocs) } // Note: there is one allocation in reflect.recv which seems to be // a limitation of escape analysis. If that is ever fixed the // allocs < 0.5 condition will trigger and this test should be fixed. } type TheNameOfThisTypeIsExactly255BytesLongSoWhenTheCompilerPrependsTheReflectTestPackageNameAndExtraStarTheLinkerRuntimeAndReflectPackagesWillHaveToCorrectlyDecodeTheSecondLengthByte0123456789_0123456789_0123456789_0123456789_0123456789_012345678 int type nameTest struct { v any want string } var nameTests = []nameTest{ {(*int32)(nil), "int32"}, {(*D1)(nil), "D1"}, {(*[]D1)(nil), ""}, {(*chan D1)(nil), ""}, {(*func() D1)(nil), ""}, {(*<-chan D1)(nil), ""}, {(*chan<- D1)(nil), ""}, {(*any)(nil), ""}, {(*interface { F() })(nil), ""}, {(*TheNameOfThisTypeIsExactly255BytesLongSoWhenTheCompilerPrependsTheReflectTestPackageNameAndExtraStarTheLinkerRuntimeAndReflectPackagesWillHaveToCorrectlyDecodeTheSecondLengthByte0123456789_0123456789_0123456789_0123456789_0123456789_012345678)(nil), "TheNameOfThisTypeIsExactly255BytesLongSoWhenTheCompilerPrependsTheReflectTestPackageNameAndExtraStarTheLinkerRuntimeAndReflectPackagesWillHaveToCorrectlyDecodeTheSecondLengthByte0123456789_0123456789_0123456789_0123456789_0123456789_012345678"}, } func TestNames(t *testing.T) { for _, test := range nameTests { typ := TypeOf(test.v).Elem() if got := typ.Name(); got != test.want { t.Errorf("%v Name()=%q, want %q", typ, got, test.want) } } } func TestExported(t *testing.T) { type ΦExported struct{} type φUnexported struct{} type BigP *big type P int type p *P type P2 p type p3 p type exportTest struct { v any want bool } exportTests := []exportTest{ {D1{}, true}, {(*D1)(nil), true}, {big{}, false}, {(*big)(nil), false}, {(BigP)(nil), true}, {(*BigP)(nil), true}, {ΦExported{}, true}, {φUnexported{}, false}, {P(0), true}, {(p)(nil), false}, {(P2)(nil), true}, {(p3)(nil), false}, } for i, test := range exportTests { typ := TypeOf(test.v) if got := IsExported(typ); got != test.want { t.Errorf("%d: %s exported=%v, want %v", i, typ.Name(), got, test.want) } } } func TestTypeStrings(t *testing.T) { type stringTest struct { typ Type want string } stringTests := []stringTest{ {TypeOf(func(int) {}), "func(int)"}, {FuncOf([]Type{TypeOf(int(0))}, nil, false), "func(int)"}, {TypeOf(XM{}), "reflect_test.XM"}, {TypeOf(new(XM)), "*reflect_test.XM"}, {TypeOf(new(XM).String), "func() string"}, {TypeOf(new(XM)).Method(0).Type, "func(*reflect_test.XM) string"}, {ChanOf(3, TypeOf(XM{})), "chan reflect_test.XM"}, {MapOf(TypeOf(int(0)), TypeOf(XM{})), "map[int]reflect_test.XM"}, {ArrayOf(3, TypeOf(XM{})), "[3]reflect_test.XM"}, {ArrayOf(3, TypeOf(struct{}{})), "[3]struct {}"}, } for i, test := range stringTests { if got, want := test.typ.String(), test.want; got != want { t.Errorf("type %d String()=%q, want %q", i, got, want) } } } func TestOffsetLock(t *testing.T) { var wg sync.WaitGroup for i := 0; i < 4; i++ { i := i wg.Add(1) go func() { for j := 0; j < 50; j++ { ResolveReflectName(fmt.Sprintf("OffsetLockName:%d:%d", i, j)) } wg.Done() }() } wg.Wait() } func TestSwapper(t *testing.T) { type I int var a, b, c I type pair struct { x, y int } type pairPtr struct { x, y int p *I } type S string tests := []struct { in any i, j int want any }{ { in: []int{1, 20, 300}, i: 0, j: 2, want: []int{300, 20, 1}, }, { in: []uintptr{1, 20, 300}, i: 0, j: 2, want: []uintptr{300, 20, 1}, }, { in: []int16{1, 20, 300}, i: 0, j: 2, want: []int16{300, 20, 1}, }, { in: []int8{1, 20, 100}, i: 0, j: 2, want: []int8{100, 20, 1}, }, { in: []*I{&a, &b, &c}, i: 0, j: 2, want: []*I{&c, &b, &a}, }, { in: []string{"eric", "sergey", "larry"}, i: 0, j: 2, want: []string{"larry", "sergey", "eric"}, }, { in: []S{"eric", "sergey", "larry"}, i: 0, j: 2, want: []S{"larry", "sergey", "eric"}, }, { in: []pair{{1, 2}, {3, 4}, {5, 6}}, i: 0, j: 2, want: []pair{{5, 6}, {3, 4}, {1, 2}}, }, { in: []pairPtr{{1, 2, &a}, {3, 4, &b}, {5, 6, &c}}, i: 0, j: 2, want: []pairPtr{{5, 6, &c}, {3, 4, &b}, {1, 2, &a}}, }, } for i, tt := range tests { inStr := fmt.Sprint(tt.in) Swapper(tt.in)(tt.i, tt.j) if !DeepEqual(tt.in, tt.want) { t.Errorf("%d. swapping %v and %v of %v = %v; want %v", i, tt.i, tt.j, inStr, tt.in, tt.want) } } } // TestUnaddressableField tests that the reflect package will not allow // a type from another package to be used as a named type with an // unexported field. // // This ensures that unexported fields cannot be modified by other packages. func TestUnaddressableField(t *testing.T) { var b Buffer // type defined in reflect, a different package var localBuffer struct { buf []byte } lv := ValueOf(&localBuffer).Elem() rv := ValueOf(b) shouldPanic("Set", func() { lv.Set(rv) }) } type Tint int type Tint2 = Tint type Talias1 struct { byte uint8 int int32 rune } type Talias2 struct { Tint Tint2 } func TestAliasNames(t *testing.T) { t1 := Talias1{byte: 1, uint8: 2, int: 3, int32: 4, rune: 5} out := fmt.Sprintf("%#v", t1) want := "reflect_test.Talias1{byte:0x1, uint8:0x2, int:3, int32:4, rune:5}" if out != want { t.Errorf("Talias1 print:\nhave: %s\nwant: %s", out, want) } t2 := Talias2{Tint: 1, Tint2: 2} out = fmt.Sprintf("%#v", t2) want = "reflect_test.Talias2{Tint:1, Tint2:2}" if out != want { t.Errorf("Talias2 print:\nhave: %s\nwant: %s", out, want) } } func TestIssue22031(t *testing.T) { type s []struct{ C int } type t1 struct{ s } type t2 struct{ f s } tests := []Value{ ValueOf(t1{s{{}}}).Field(0).Index(0).Field(0), ValueOf(t2{s{{}}}).Field(0).Index(0).Field(0), } for i, test := range tests { if test.CanSet() { t.Errorf("%d: CanSet: got true, want false", i) } } } type NonExportedFirst int func (i NonExportedFirst) ΦExported() {} func (i NonExportedFirst) nonexported() int { panic("wrong") } func TestIssue22073(t *testing.T) { m := ValueOf(NonExportedFirst(0)).Method(0) if got := m.Type().NumOut(); got != 0 { t.Errorf("NumOut: got %v, want 0", got) } // Shouldn't panic. m.Call(nil) } func TestMapIterNonEmptyMap(t *testing.T) { m := map[string]int{"one": 1, "two": 2, "three": 3} iter := ValueOf(m).MapRange() if got, want := iterateToString(iter), `[one: 1, three: 3, two: 2]`; got != want { t.Errorf("iterator returned %s (after sorting), want %s", got, want) } } func TestMapIterNilMap(t *testing.T) { var m map[string]int iter := ValueOf(m).MapRange() if got, want := iterateToString(iter), `[]`; got != want { t.Errorf("non-empty result iteratoring nil map: %s", got) } } func TestMapIterReset(t *testing.T) { iter := new(MapIter) // Use of zero iterator should panic. func() { defer func() { recover() }() iter.Next() t.Error("Next did not panic") }() // Reset to new Map should work. m := map[string]int{"one": 1, "two": 2, "three": 3} iter.Reset(ValueOf(m)) if got, want := iterateToString(iter), `[one: 1, three: 3, two: 2]`; got != want { t.Errorf("iterator returned %s (after sorting), want %s", got, want) } // Reset to Zero value should work, but iterating over it should panic. iter.Reset(Value{}) func() { defer func() { recover() }() iter.Next() t.Error("Next did not panic") }() // Reset to a different Map with different types should work. m2 := map[int]string{1: "one", 2: "two", 3: "three"} iter.Reset(ValueOf(m2)) if got, want := iterateToString(iter), `[1: one, 2: two, 3: three]`; got != want { t.Errorf("iterator returned %s (after sorting), want %s", got, want) } // Check that Reset, Next, and SetKey/SetValue play nicely together. m3 := map[uint64]uint64{ 1 << 0: 1 << 1, 1 << 1: 1 << 2, 1 << 2: 1 << 3, } kv := New(TypeOf(uint64(0))).Elem() for i := 0; i < 5; i++ { var seenk, seenv uint64 iter.Reset(ValueOf(m3)) for iter.Next() { kv.SetIterKey(iter) seenk ^= kv.Uint() kv.SetIterValue(iter) seenv ^= kv.Uint() } if seenk != 0b111 { t.Errorf("iteration yielded keys %b, want %b", seenk, 0b111) } if seenv != 0b1110 { t.Errorf("iteration yielded values %b, want %b", seenv, 0b1110) } } // Reset should not allocate. n := int(testing.AllocsPerRun(10, func() { iter.Reset(ValueOf(m2)) iter.Reset(Value{}) })) if n > 0 { t.Errorf("MapIter.Reset allocated %d times", n) } } func TestMapIterSafety(t *testing.T) { // Using a zero MapIter causes a panic, but not a crash. func() { defer func() { recover() }() new(MapIter).Key() t.Fatal("Key did not panic") }() func() { defer func() { recover() }() new(MapIter).Value() t.Fatal("Value did not panic") }() func() { defer func() { recover() }() new(MapIter).Next() t.Fatal("Next did not panic") }() // Calling Key/Value on a MapIter before Next // causes a panic, but not a crash. var m map[string]int iter := ValueOf(m).MapRange() func() { defer func() { recover() }() iter.Key() t.Fatal("Key did not panic") }() func() { defer func() { recover() }() iter.Value() t.Fatal("Value did not panic") }() // Calling Next, Key, or Value on an exhausted iterator // causes a panic, but not a crash. iter.Next() // -> false func() { defer func() { recover() }() iter.Key() t.Fatal("Key did not panic") }() func() { defer func() { recover() }() iter.Value() t.Fatal("Value did not panic") }() func() { defer func() { recover() }() iter.Next() t.Fatal("Next did not panic") }() } func TestMapIterNext(t *testing.T) { // The first call to Next should reflect any // insertions to the map since the iterator was created. m := map[string]int{} iter := ValueOf(m).MapRange() m["one"] = 1 if got, want := iterateToString(iter), `[one: 1]`; got != want { t.Errorf("iterator returned deleted elements: got %s, want %s", got, want) } } func TestMapIterDelete0(t *testing.T) { // Delete all elements before first iteration. m := map[string]int{"one": 1, "two": 2, "three": 3} iter := ValueOf(m).MapRange() delete(m, "one") delete(m, "two") delete(m, "three") if got, want := iterateToString(iter), `[]`; got != want { t.Errorf("iterator returned deleted elements: got %s, want %s", got, want) } } func TestMapIterDelete1(t *testing.T) { // Delete all elements after first iteration. m := map[string]int{"one": 1, "two": 2, "three": 3} iter := ValueOf(m).MapRange() var got []string for iter.Next() { got = append(got, fmt.Sprint(iter.Key(), iter.Value())) delete(m, "one") delete(m, "two") delete(m, "three") } if len(got) != 1 { t.Errorf("iterator returned wrong number of elements: got %d, want 1", len(got)) } } // iterateToString returns the set of elements // returned by an iterator in readable form. func iterateToString(it *MapIter) string { var got []string for it.Next() { line := fmt.Sprintf("%v: %v", it.Key(), it.Value()) got = append(got, line) } sort.Strings(got) return "[" + strings.Join(got, ", ") + "]" } func TestConvertibleTo(t *testing.T) { t1 := ValueOf(example1.MyStruct{}).Type() t2 := ValueOf(example2.MyStruct{}).Type() // Shouldn't raise stack overflow if t1.ConvertibleTo(t2) { t.Fatalf("(%s).ConvertibleTo(%s) = true, want false", t1, t2) } t3 := ValueOf([]example1.MyStruct{}).Type() t4 := ValueOf([]example2.MyStruct{}).Type() if t3.ConvertibleTo(t4) { t.Fatalf("(%s).ConvertibleTo(%s) = true, want false", t3, t4) } } func TestSetIter(t *testing.T) { data := map[string]int{ "foo": 1, "bar": 2, "baz": 3, } m := ValueOf(data) i := m.MapRange() k := New(TypeOf("")).Elem() v := New(TypeOf(0)).Elem() shouldPanic("Value.SetIterKey called before Next", func() { k.SetIterKey(i) }) shouldPanic("Value.SetIterValue called before Next", func() { v.SetIterValue(i) }) data2 := map[string]int{} for i.Next() { k.SetIterKey(i) v.SetIterValue(i) data2[k.Interface().(string)] = v.Interface().(int) } if !DeepEqual(data, data2) { t.Errorf("maps not equal, got %v want %v", data2, data) } shouldPanic("Value.SetIterKey called on exhausted iterator", func() { k.SetIterKey(i) }) shouldPanic("Value.SetIterValue called on exhausted iterator", func() { v.SetIterValue(i) }) i.Reset(m) i.Next() shouldPanic("Value.SetIterKey using unaddressable value", func() { ValueOf("").SetIterKey(i) }) shouldPanic("Value.SetIterValue using unaddressable value", func() { ValueOf(0).SetIterValue(i) }) shouldPanic("value of type string is not assignable to type int", func() { New(TypeOf(0)).Elem().SetIterKey(i) }) shouldPanic("value of type int is not assignable to type string", func() { New(TypeOf("")).Elem().SetIterValue(i) }) // Make sure assignment conversion works. var x any y := ValueOf(&x).Elem() y.SetIterKey(i) if _, ok := data[x.(string)]; !ok { t.Errorf("got key %s which is not in map", x) } y.SetIterValue(i) if x.(int) < 1 || x.(int) > 3 { t.Errorf("got value %d which is not in map", x) } // Try some key/value types which are direct interfaces. a := 88 b := 99 pp := map[*int]*int{ &a: &b, } i = ValueOf(pp).MapRange() i.Next() y.SetIterKey(i) if got := *y.Interface().(*int); got != a { t.Errorf("pointer incorrect: got %d want %d", got, a) } y.SetIterValue(i) if got := *y.Interface().(*int); got != b { t.Errorf("pointer incorrect: got %d want %d", got, b) } // Make sure we panic assigning from an unexported field. m = ValueOf(struct{ m map[string]int }{data}).Field(0) for iter := m.MapRange(); iter.Next(); { shouldPanic("using value obtained using unexported field", func() { k.SetIterKey(iter) }) shouldPanic("using value obtained using unexported field", func() { v.SetIterValue(iter) }) } } func TestMethodCallValueCodePtr(t *testing.T) { m := ValueOf(Point{}).Method(1) want := MethodValueCallCodePtr() if got := uintptr(m.UnsafePointer()); got != want { t.Errorf("methodValueCall code pointer mismatched, want: %v, got: %v", want, got) } if got := m.Pointer(); got != want { t.Errorf("methodValueCall code pointer mismatched, want: %v, got: %v", want, got) } } type A struct{} type B[T any] struct{} func TestIssue50208(t *testing.T) { want1 := "B[reflect_test.A]" if got := TypeOf(new(B[A])).Elem().Name(); got != want1 { t.Errorf("name of type parameter mismatched, want:%s, got:%s", want1, got) } want2 := "B[reflect_test.B[reflect_test.A]]" if got := TypeOf(new(B[B[A]])).Elem().Name(); got != want2 { t.Errorf("name of type parameter mismatched, want:%s, got:%s", want2, got) } } func TestNegativeKindString(t *testing.T) { x := -1 s := Kind(x).String() want := "kind-1" if s != want { t.Fatalf("Kind(-1).String() = %q, want %q", s, want) } } type ( namedBool bool namedBytes []byte ) func TestValue_Cap(t *testing.T) { a := &[3]int{1, 2, 3} v := ValueOf(a) if v.Cap() != cap(a) { t.Errorf("Cap = %d want %d", v.Cap(), cap(a)) } a = nil v = ValueOf(a) if v.Cap() != cap(a) { t.Errorf("Cap = %d want %d", v.Cap(), cap(a)) } getError := func(f func()) (errorStr string) { defer func() { e := recover() if str, ok := e.(string); ok { errorStr = str } }() f() return } e := getError(func() { var ptr *int ValueOf(ptr).Cap() }) wantStr := "reflect: call of reflect.Value.Cap on ptr to non-array Value" if e != wantStr { t.Errorf("error is %q, want %q", e, wantStr) } } func TestValue_Len(t *testing.T) { a := &[3]int{1, 2, 3} v := ValueOf(a) if v.Len() != len(a) { t.Errorf("Len = %d want %d", v.Len(), len(a)) } a = nil v = ValueOf(a) if v.Len() != len(a) { t.Errorf("Len = %d want %d", v.Len(), len(a)) } getError := func(f func()) (errorStr string) { defer func() { e := recover() if str, ok := e.(string); ok { errorStr = str } }() f() return } e := getError(func() { var ptr *int ValueOf(ptr).Len() }) wantStr := "reflect: call of reflect.Value.Len on ptr to non-array Value" if e != wantStr { t.Errorf("error is %q, want %q", e, wantStr) } } func TestValue_Comparable(t *testing.T) { var a int var s []int var i interface{} = a var iSlice interface{} = s var iArrayFalse interface{} = [2]interface{}{1, map[int]int{}} var iArrayTrue interface{} = [2]interface{}{1, struct{ I interface{} }{1}} var testcases = []struct { value Value comparable bool deref bool }{ { ValueOf(32), true, false, }, { ValueOf(int8(1)), true, false, }, { ValueOf(int16(1)), true, false, }, { ValueOf(int32(1)), true, false, }, { ValueOf(int64(1)), true, false, }, { ValueOf(uint8(1)), true, false, }, { ValueOf(uint16(1)), true, false, }, { ValueOf(uint32(1)), true, false, }, { ValueOf(uint64(1)), true, false, }, { ValueOf(float32(1)), true, false, }, { ValueOf(float64(1)), true, false, }, { ValueOf(complex(float32(1), float32(1))), true, false, }, { ValueOf(complex(float64(1), float64(1))), true, false, }, { ValueOf("abc"), true, false, }, { ValueOf(true), true, false, }, { ValueOf(map[int]int{}), false, false, }, { ValueOf([]int{}), false, false, }, { Value{}, false, false, }, { ValueOf(&a), true, false, }, { ValueOf(&s), true, false, }, { ValueOf(&i), true, true, }, { ValueOf(&iSlice), false, true, }, { ValueOf([2]int{}), true, false, }, { ValueOf([2]map[int]int{}), false, false, }, { ValueOf([0]func(){}), false, false, }, { ValueOf([2]struct{ I interface{} }{{1}, {1}}), true, false, }, { ValueOf([2]struct{ I interface{} }{{[]int{}}, {1}}), false, false, }, { ValueOf([2]interface{}{1, struct{ I int }{1}}), true, false, }, { ValueOf([2]interface{}{[1]interface{}{map[int]int{}}, struct{ I int }{1}}), false, false, }, { ValueOf(&iArrayFalse), false, true, }, { ValueOf(&iArrayTrue), true, true, }, } for _, cas := range testcases { v := cas.value if cas.deref { v = v.Elem() } got := v.Comparable() if got != cas.comparable { t.Errorf("%T.Comparable = %t, want %t", v, got, cas.comparable) } } } type ValueEqualTest struct { v, u any eq bool vDeref, uDeref bool } var equalI interface{} = 1 var equalSlice interface{} = []int{1} var nilInterface interface{} var mapInterface interface{} = map[int]int{} var valueEqualTests = []ValueEqualTest{ { Value{}, Value{}, true, false, false, }, { true, true, true, false, false, }, { 1, 1, true, false, false, }, { int8(1), int8(1), true, false, false, }, { int16(1), int16(1), true, false, false, }, { int32(1), int32(1), true, false, false, }, { int64(1), int64(1), true, false, false, }, { uint(1), uint(1), true, false, false, }, { uint8(1), uint8(1), true, false, false, }, { uint16(1), uint16(1), true, false, false, }, { uint32(1), uint32(1), true, false, false, }, { uint64(1), uint64(1), true, false, false, }, { float32(1), float32(1), true, false, false, }, { float64(1), float64(1), true, false, false, }, { complex(1, 1), complex(1, 1), true, false, false, }, { complex128(1 + 1i), complex128(1 + 1i), true, false, false, }, { func() {}, nil, false, false, false, }, { &equalI, 1, true, true, false, }, { (chan int)(nil), nil, false, false, false, }, { (chan int)(nil), (chan int)(nil), true, false, false, }, { &equalI, &equalI, true, false, false, }, { struct{ i int }{1}, struct{ i int }{1}, true, false, false, }, { struct{ i int }{1}, struct{ i int }{2}, false, false, false, }, { &nilInterface, &nilInterface, true, true, true, }, { 1, ValueOf(struct{ i int }{1}).Field(0), true, false, false, }, } func TestValue_Equal(t *testing.T) { for _, test := range valueEqualTests { var v, u Value if vv, ok := test.v.(Value); ok { v = vv } else { v = ValueOf(test.v) } if uu, ok := test.u.(Value); ok { u = uu } else { u = ValueOf(test.u) } if test.vDeref { v = v.Elem() } if test.uDeref { u = u.Elem() } if r := v.Equal(u); r != test.eq { t.Errorf("%s == %s got %t, want %t", v.Type(), u.Type(), r, test.eq) } } } func TestValue_EqualNonComparable(t *testing.T) { var invalid = Value{} // ValueOf(nil) var values = []Value{ // Value of slice is non-comparable. ValueOf([]int(nil)), ValueOf(([]int{})), // Value of map is non-comparable. ValueOf(map[int]int(nil)), ValueOf((map[int]int{})), // Value of func is non-comparable. ValueOf(((func())(nil))), ValueOf(func() {}), // Value of struct is non-comparable because of non-comparable elements. ValueOf((NonComparableStruct{})), // Value of array is non-comparable because of non-comparable elements. ValueOf([0]map[int]int{}), ValueOf([0]func(){}), ValueOf(([1]struct{ I interface{} }{{[]int{}}})), ValueOf(([1]interface{}{[1]interface{}{map[int]int{}}})), } for _, value := range values { // Panic when reflect.Value.Equal using two valid non-comparable values. shouldPanic("are not comparable", func() { value.Equal(value) }) // If one is non-comparable and the other is invalid, the expected result is always false. if r := value.Equal(invalid); r != false { t.Errorf("%s == invalid got %t, want false", value.Type(), r) } } } func TestInitFuncTypes(t *testing.T) { n := 100 var wg sync.WaitGroup wg.Add(n) for i := 0; i < n; i++ { go func() { defer wg.Done() ipT := TypeOf(net.IP{}) for i := 0; i < ipT.NumMethod(); i++ { _ = ipT.Method(i) } }() } wg.Wait() } func TestClear(t *testing.T) { m := make(map[string]any, len(valueTests)) for _, tt := range valueTests { m[tt.s] = tt.i } mapTestFn := func(v Value) bool { v.Clear(); return v.Len() == 0 } s := make([]*pair, len(valueTests)) for i := range s { s[i] = &valueTests[i] } sliceTestFn := func(v Value) bool { v.Clear() for i := 0; i < v.Len(); i++ { if !v.Index(i).IsZero() { return false } } return true } panicTestFn := func(v Value) bool { shouldPanic("reflect.Value.Clear", func() { v.Clear() }); return true } tests := []struct { name string value Value testFunc func(v Value) bool }{ {"map", ValueOf(m), mapTestFn}, {"slice no pointer", ValueOf([]int{1, 2, 3, 4, 5}), sliceTestFn}, {"slice has pointer", ValueOf(s), sliceTestFn}, {"non-map/slice", ValueOf(1), panicTestFn}, } for _, tc := range tests { tc := tc t.Run(tc.name, func(t *testing.T) { t.Parallel() if !tc.testFunc(tc.value) { t.Errorf("unexpected result for value.Clear(): %value", tc.value) } }) } }