// Copyright 2015 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Code to check that pointer writes follow the cgo rules. // These functions are invoked when GOEXPERIMENT=cgocheck2 is enabled. package runtime import ( "internal/goarch" "internal/goexperiment" "unsafe" ) const cgoWriteBarrierFail = "unpinned Go pointer stored into non-Go memory" // cgoCheckPtrWrite is called whenever a pointer is stored into memory. // It throws if the program is storing an unpinned Go pointer into non-Go // memory. // // This is called from generated code when GOEXPERIMENT=cgocheck2 is enabled. // //go:nosplit //go:nowritebarrier func cgoCheckPtrWrite(dst *unsafe.Pointer, src unsafe.Pointer) { if !mainStarted { // Something early in startup hates this function. // Don't start doing any actual checking until the // runtime has set itself up. return } if !cgoIsGoPointer(src) { return } if cgoIsGoPointer(unsafe.Pointer(dst)) { return } // If we are running on the system stack then dst might be an // address on the stack, which is OK. gp := getg() if gp == gp.m.g0 || gp == gp.m.gsignal { return } // Allocating memory can write to various mfixalloc structs // that look like they are non-Go memory. if gp.m.mallocing != 0 { return } // If the object is pinned, it's safe to store it in C memory. The GC // ensures it will not be moved or freed. if isPinned(src) { return } // It's OK if writing to memory allocated by persistentalloc. // Do this check last because it is more expensive and rarely true. // If it is false the expense doesn't matter since we are crashing. if inPersistentAlloc(uintptr(unsafe.Pointer(dst))) { return } systemstack(func() { println("write of unpinned Go pointer", hex(uintptr(src)), "to non-Go memory", hex(uintptr(unsafe.Pointer(dst)))) throw(cgoWriteBarrierFail) }) } // cgoCheckMemmove is called when moving a block of memory. // It throws if the program is copying a block that contains an unpinned Go // pointer into non-Go memory. // // This is called from generated code when GOEXPERIMENT=cgocheck2 is enabled. // //go:nosplit //go:nowritebarrier func cgoCheckMemmove(typ *_type, dst, src unsafe.Pointer) { cgoCheckMemmove2(typ, dst, src, 0, typ.Size_) } // cgoCheckMemmove2 is called when moving a block of memory. // dst and src point off bytes into the value to copy. // size is the number of bytes to copy. // It throws if the program is copying a block that contains an unpinned Go // pointer into non-Go memory. // //go:nosplit //go:nowritebarrier func cgoCheckMemmove2(typ *_type, dst, src unsafe.Pointer, off, size uintptr) { if typ.PtrBytes == 0 { return } if !cgoIsGoPointer(src) { return } if cgoIsGoPointer(dst) { return } cgoCheckTypedBlock(typ, src, off, size) } // cgoCheckSliceCopy is called when copying n elements of a slice. // src and dst are pointers to the first element of the slice. // typ is the element type of the slice. // It throws if the program is copying slice elements that contain unpinned Go // pointers into non-Go memory. // //go:nosplit //go:nowritebarrier func cgoCheckSliceCopy(typ *_type, dst, src unsafe.Pointer, n int) { if typ.PtrBytes == 0 { return } if !cgoIsGoPointer(src) { return } if cgoIsGoPointer(dst) { return } p := src for i := 0; i < n; i++ { cgoCheckTypedBlock(typ, p, 0, typ.Size_) p = add(p, typ.Size_) } } // cgoCheckTypedBlock checks the block of memory at src, for up to size bytes, // and throws if it finds an unpinned Go pointer. The type of the memory is typ, // and src is off bytes into that type. // //go:nosplit //go:nowritebarrier func cgoCheckTypedBlock(typ *_type, src unsafe.Pointer, off, size uintptr) { // Anything past typ.PtrBytes is not a pointer. if typ.PtrBytes <= off { return } if ptrdataSize := typ.PtrBytes - off; size > ptrdataSize { size = ptrdataSize } if typ.Kind_&kindGCProg == 0 { cgoCheckBits(src, typ.GCData, off, size) return } // The type has a GC program. Try to find GC bits somewhere else. for _, datap := range activeModules() { if cgoInRange(src, datap.data, datap.edata) { doff := uintptr(src) - datap.data cgoCheckBits(add(src, -doff), datap.gcdatamask.bytedata, off+doff, size) return } if cgoInRange(src, datap.bss, datap.ebss) { boff := uintptr(src) - datap.bss cgoCheckBits(add(src, -boff), datap.gcbssmask.bytedata, off+boff, size) return } } s := spanOfUnchecked(uintptr(src)) if s.state.get() == mSpanManual { // There are no heap bits for value stored on the stack. // For a channel receive src might be on the stack of some // other goroutine, so we can't unwind the stack even if // we wanted to. // We can't expand the GC program without extra storage // space we can't easily get. // Fortunately we have the type information. systemstack(func() { cgoCheckUsingType(typ, src, off, size) }) return } // src must be in the regular heap. if goexperiment.AllocHeaders { tp := s.typePointersOf(uintptr(src), size) for { var addr uintptr if tp, addr = tp.next(uintptr(src) + size); addr == 0 { break } v := *(*unsafe.Pointer)(unsafe.Pointer(addr)) if cgoIsGoPointer(v) && !isPinned(v) { throw(cgoWriteBarrierFail) } } } else { hbits := heapBitsForAddr(uintptr(src), size) for { var addr uintptr if hbits, addr = hbits.next(); addr == 0 { break } v := *(*unsafe.Pointer)(unsafe.Pointer(addr)) if cgoIsGoPointer(v) && !isPinned(v) { throw(cgoWriteBarrierFail) } } } } // cgoCheckBits checks the block of memory at src, for up to size // bytes, and throws if it finds an unpinned Go pointer. The gcbits mark each // pointer value. The src pointer is off bytes into the gcbits. // //go:nosplit //go:nowritebarrier func cgoCheckBits(src unsafe.Pointer, gcbits *byte, off, size uintptr) { skipMask := off / goarch.PtrSize / 8 skipBytes := skipMask * goarch.PtrSize * 8 ptrmask := addb(gcbits, skipMask) src = add(src, skipBytes) off -= skipBytes size += off var bits uint32 for i := uintptr(0); i < size; i += goarch.PtrSize { if i&(goarch.PtrSize*8-1) == 0 { bits = uint32(*ptrmask) ptrmask = addb(ptrmask, 1) } else { bits >>= 1 } if off > 0 { off -= goarch.PtrSize } else { if bits&1 != 0 { v := *(*unsafe.Pointer)(add(src, i)) if cgoIsGoPointer(v) && !isPinned(v) { throw(cgoWriteBarrierFail) } } } } } // cgoCheckUsingType is like cgoCheckTypedBlock, but is a last ditch // fall back to look for pointers in src using the type information. // We only use this when looking at a value on the stack when the type // uses a GC program, because otherwise it's more efficient to use the // GC bits. This is called on the system stack. // //go:nowritebarrier //go:systemstack func cgoCheckUsingType(typ *_type, src unsafe.Pointer, off, size uintptr) { if typ.PtrBytes == 0 { return } // Anything past typ.PtrBytes is not a pointer. if typ.PtrBytes <= off { return } if ptrdataSize := typ.PtrBytes - off; size > ptrdataSize { size = ptrdataSize } if typ.Kind_&kindGCProg == 0 { cgoCheckBits(src, typ.GCData, off, size) return } switch typ.Kind_ & kindMask { default: throw("can't happen") case kindArray: at := (*arraytype)(unsafe.Pointer(typ)) for i := uintptr(0); i < at.Len; i++ { if off < at.Elem.Size_ { cgoCheckUsingType(at.Elem, src, off, size) } src = add(src, at.Elem.Size_) skipped := off if skipped > at.Elem.Size_ { skipped = at.Elem.Size_ } checked := at.Elem.Size_ - skipped off -= skipped if size <= checked { return } size -= checked } case kindStruct: st := (*structtype)(unsafe.Pointer(typ)) for _, f := range st.Fields { if off < f.Typ.Size_ { cgoCheckUsingType(f.Typ, src, off, size) } src = add(src, f.Typ.Size_) skipped := off if skipped > f.Typ.Size_ { skipped = f.Typ.Size_ } checked := f.Typ.Size_ - skipped off -= skipped if size <= checked { return } size -= checked } } }