// Copyright 2015 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Garbage collector: write barriers. // // For the concurrent garbage collector, the Go compiler implements // updates to pointer-valued fields that may be in heap objects by // emitting calls to write barriers. The main write barrier for // individual pointer writes is gcWriteBarrier and is implemented in // assembly. This file contains write barrier entry points for bulk // operations. See also mwbbuf.go. package runtime import ( "internal/abi" "internal/goarch" "internal/goexperiment" "unsafe" ) // Go uses a hybrid barrier that combines a Yuasa-style deletion // barrier—which shades the object whose reference is being // overwritten—with Dijkstra insertion barrier—which shades the object // whose reference is being written. The insertion part of the barrier // is necessary while the calling goroutine's stack is grey. In // pseudocode, the barrier is: // // writePointer(slot, ptr): // shade(*slot) // if current stack is grey: // shade(ptr) // *slot = ptr // // slot is the destination in Go code. // ptr is the value that goes into the slot in Go code. // // Shade indicates that it has seen a white pointer by adding the referent // to wbuf as well as marking it. // // The two shades and the condition work together to prevent a mutator // from hiding an object from the garbage collector: // // 1. shade(*slot) prevents a mutator from hiding an object by moving // the sole pointer to it from the heap to its stack. If it attempts // to unlink an object from the heap, this will shade it. // // 2. shade(ptr) prevents a mutator from hiding an object by moving // the sole pointer to it from its stack into a black object in the // heap. If it attempts to install the pointer into a black object, // this will shade it. // // 3. Once a goroutine's stack is black, the shade(ptr) becomes // unnecessary. shade(ptr) prevents hiding an object by moving it from // the stack to the heap, but this requires first having a pointer // hidden on the stack. Immediately after a stack is scanned, it only // points to shaded objects, so it's not hiding anything, and the // shade(*slot) prevents it from hiding any other pointers on its // stack. // // For a detailed description of this barrier and proof of // correctness, see https://github.com/golang/proposal/blob/master/design/17503-eliminate-rescan.md // // // // Dealing with memory ordering: // // Both the Yuasa and Dijkstra barriers can be made conditional on the // color of the object containing the slot. We chose not to make these // conditional because the cost of ensuring that the object holding // the slot doesn't concurrently change color without the mutator // noticing seems prohibitive. // // Consider the following example where the mutator writes into // a slot and then loads the slot's mark bit while the GC thread // writes to the slot's mark bit and then as part of scanning reads // the slot. // // Initially both [slot] and [slotmark] are 0 (nil) // Mutator thread GC thread // st [slot], ptr st [slotmark], 1 // // ld r1, [slotmark] ld r2, [slot] // // Without an expensive memory barrier between the st and the ld, the final // result on most HW (including 386/amd64) can be r1==r2==0. This is a classic // example of what can happen when loads are allowed to be reordered with older // stores (avoiding such reorderings lies at the heart of the classic // Peterson/Dekker algorithms for mutual exclusion). Rather than require memory // barriers, which will slow down both the mutator and the GC, we always grey // the ptr object regardless of the slot's color. // // Another place where we intentionally omit memory barriers is when // accessing mheap_.arena_used to check if a pointer points into the // heap. On relaxed memory machines, it's possible for a mutator to // extend the size of the heap by updating arena_used, allocate an // object from this new region, and publish a pointer to that object, // but for tracing running on another processor to observe the pointer // but use the old value of arena_used. In this case, tracing will not // mark the object, even though it's reachable. However, the mutator // is guaranteed to execute a write barrier when it publishes the // pointer, so it will take care of marking the object. A general // consequence of this is that the garbage collector may cache the // value of mheap_.arena_used. (See issue #9984.) // // // Stack writes: // // The compiler omits write barriers for writes to the current frame, // but if a stack pointer has been passed down the call stack, the // compiler will generate a write barrier for writes through that // pointer (because it doesn't know it's not a heap pointer). // // // Global writes: // // The Go garbage collector requires write barriers when heap pointers // are stored in globals. Many garbage collectors ignore writes to // globals and instead pick up global -> heap pointers during // termination. This increases pause time, so we instead rely on write // barriers for writes to globals so that we don't have to rescan // global during mark termination. // // // Publication ordering: // // The write barrier is *pre-publication*, meaning that the write // barrier happens prior to the *slot = ptr write that may make ptr // reachable by some goroutine that currently cannot reach it. // // // Signal handler pointer writes: // // In general, the signal handler cannot safely invoke the write // barrier because it may run without a P or even during the write // barrier. // // There is exactly one exception: profbuf.go omits a barrier during // signal handler profile logging. That's safe only because of the // deletion barrier. See profbuf.go for a detailed argument. If we // remove the deletion barrier, we'll have to work out a new way to // handle the profile logging. // typedmemmove copies a value of type typ to dst from src. // Must be nosplit, see #16026. // // TODO: Perfect for go:nosplitrec since we can't have a safe point // anywhere in the bulk barrier or memmove. // //go:nosplit func typedmemmove(typ *abi.Type, dst, src unsafe.Pointer) { if dst == src { return } if writeBarrier.enabled && typ.PtrBytes != 0 { // This always copies a full value of type typ so it's safe // to pass typ along as an optimization. See the comment on // bulkBarrierPreWrite. bulkBarrierPreWrite(uintptr(dst), uintptr(src), typ.PtrBytes, typ) } // There's a race here: if some other goroutine can write to // src, it may change some pointer in src after we've // performed the write barrier but before we perform the // memory copy. This safe because the write performed by that // other goroutine must also be accompanied by a write // barrier, so at worst we've unnecessarily greyed the old // pointer that was in src. memmove(dst, src, typ.Size_) if goexperiment.CgoCheck2 { cgoCheckMemmove2(typ, dst, src, 0, typ.Size_) } } // wbZero performs the write barrier operations necessary before // zeroing a region of memory at address dst of type typ. // Does not actually do the zeroing. // //go:nowritebarrierrec //go:nosplit func wbZero(typ *_type, dst unsafe.Pointer) { // This always copies a full value of type typ so it's safe // to pass typ along as an optimization. See the comment on // bulkBarrierPreWrite. bulkBarrierPreWrite(uintptr(dst), 0, typ.PtrBytes, typ) } // wbMove performs the write barrier operations necessary before // copying a region of memory from src to dst of type typ. // Does not actually do the copying. // //go:nowritebarrierrec //go:nosplit func wbMove(typ *_type, dst, src unsafe.Pointer) { // This always copies a full value of type typ so it's safe to // pass a type here. // // See the comment on bulkBarrierPreWrite. bulkBarrierPreWrite(uintptr(dst), uintptr(src), typ.PtrBytes, typ) } //go:linkname reflect_typedmemmove reflect.typedmemmove func reflect_typedmemmove(typ *_type, dst, src unsafe.Pointer) { if raceenabled { raceWriteObjectPC(typ, dst, getcallerpc(), abi.FuncPCABIInternal(reflect_typedmemmove)) raceReadObjectPC(typ, src, getcallerpc(), abi.FuncPCABIInternal(reflect_typedmemmove)) } if msanenabled { msanwrite(dst, typ.Size_) msanread(src, typ.Size_) } if asanenabled { asanwrite(dst, typ.Size_) asanread(src, typ.Size_) } typedmemmove(typ, dst, src) } //go:linkname reflectlite_typedmemmove internal/reflectlite.typedmemmove func reflectlite_typedmemmove(typ *_type, dst, src unsafe.Pointer) { reflect_typedmemmove(typ, dst, src) } // reflectcallmove is invoked by reflectcall to copy the return values // out of the stack and into the heap, invoking the necessary write // barriers. dst, src, and size describe the return value area to // copy. typ describes the entire frame (not just the return values). // typ may be nil, which indicates write barriers are not needed. // // It must be nosplit and must only call nosplit functions because the // stack map of reflectcall is wrong. // //go:nosplit func reflectcallmove(typ *_type, dst, src unsafe.Pointer, size uintptr, regs *abi.RegArgs) { if writeBarrier.enabled && typ != nil && typ.PtrBytes != 0 && size >= goarch.PtrSize { // Pass nil for the type. dst does not point to value of type typ, // but rather points into one, so applying the optimization is not // safe. See the comment on this function. bulkBarrierPreWrite(uintptr(dst), uintptr(src), size, nil) } memmove(dst, src, size) // Move pointers returned in registers to a place where the GC can see them. for i := range regs.Ints { if regs.ReturnIsPtr.Get(i) { regs.Ptrs[i] = unsafe.Pointer(regs.Ints[i]) } } } //go:nosplit func typedslicecopy(typ *_type, dstPtr unsafe.Pointer, dstLen int, srcPtr unsafe.Pointer, srcLen int) int { n := dstLen if n > srcLen { n = srcLen } if n == 0 { return 0 } // The compiler emits calls to typedslicecopy before // instrumentation runs, so unlike the other copying and // assignment operations, it's not instrumented in the calling // code and needs its own instrumentation. if raceenabled { callerpc := getcallerpc() pc := abi.FuncPCABIInternal(slicecopy) racewriterangepc(dstPtr, uintptr(n)*typ.Size_, callerpc, pc) racereadrangepc(srcPtr, uintptr(n)*typ.Size_, callerpc, pc) } if msanenabled { msanwrite(dstPtr, uintptr(n)*typ.Size_) msanread(srcPtr, uintptr(n)*typ.Size_) } if asanenabled { asanwrite(dstPtr, uintptr(n)*typ.Size_) asanread(srcPtr, uintptr(n)*typ.Size_) } if goexperiment.CgoCheck2 { cgoCheckSliceCopy(typ, dstPtr, srcPtr, n) } if dstPtr == srcPtr { return n } // Note: No point in checking typ.PtrBytes here: // compiler only emits calls to typedslicecopy for types with pointers, // and growslice and reflect_typedslicecopy check for pointers // before calling typedslicecopy. size := uintptr(n) * typ.Size_ if writeBarrier.enabled { // This always copies one or more full values of type typ so // it's safe to pass typ along as an optimization. See the comment on // bulkBarrierPreWrite. pwsize := size - typ.Size_ + typ.PtrBytes bulkBarrierPreWrite(uintptr(dstPtr), uintptr(srcPtr), pwsize, typ) } // See typedmemmove for a discussion of the race between the // barrier and memmove. memmove(dstPtr, srcPtr, size) return n } //go:linkname reflect_typedslicecopy reflect.typedslicecopy func reflect_typedslicecopy(elemType *_type, dst, src slice) int { if elemType.PtrBytes == 0 { return slicecopy(dst.array, dst.len, src.array, src.len, elemType.Size_) } return typedslicecopy(elemType, dst.array, dst.len, src.array, src.len) } // typedmemclr clears the typed memory at ptr with type typ. The // memory at ptr must already be initialized (and hence in type-safe // state). If the memory is being initialized for the first time, see // memclrNoHeapPointers. // // If the caller knows that typ has pointers, it can alternatively // call memclrHasPointers. // // TODO: A "go:nosplitrec" annotation would be perfect for this. // //go:nosplit func typedmemclr(typ *_type, ptr unsafe.Pointer) { if writeBarrier.enabled && typ.PtrBytes != 0 { // This always clears a whole value of type typ, so it's // safe to pass a type here and apply the optimization. // See the comment on bulkBarrierPreWrite. bulkBarrierPreWrite(uintptr(ptr), 0, typ.PtrBytes, typ) } memclrNoHeapPointers(ptr, typ.Size_) } //go:linkname reflect_typedmemclr reflect.typedmemclr func reflect_typedmemclr(typ *_type, ptr unsafe.Pointer) { typedmemclr(typ, ptr) } //go:linkname reflect_typedmemclrpartial reflect.typedmemclrpartial func reflect_typedmemclrpartial(typ *_type, ptr unsafe.Pointer, off, size uintptr) { if writeBarrier.enabled && typ.PtrBytes != 0 { // Pass nil for the type. ptr does not point to value of type typ, // but rather points into one so it's not safe to apply the optimization. // See the comment on this function in the reflect package and the // comment on bulkBarrierPreWrite. bulkBarrierPreWrite(uintptr(ptr), 0, size, nil) } memclrNoHeapPointers(ptr, size) } //go:linkname reflect_typedarrayclear reflect.typedarrayclear func reflect_typedarrayclear(typ *_type, ptr unsafe.Pointer, len int) { size := typ.Size_ * uintptr(len) if writeBarrier.enabled && typ.PtrBytes != 0 { // This always clears whole elements of an array, so it's // safe to pass a type here. See the comment on bulkBarrierPreWrite. bulkBarrierPreWrite(uintptr(ptr), 0, size, typ) } memclrNoHeapPointers(ptr, size) } // memclrHasPointers clears n bytes of typed memory starting at ptr. // The caller must ensure that the type of the object at ptr has // pointers, usually by checking typ.PtrBytes. However, ptr // does not have to point to the start of the allocation. // //go:nosplit func memclrHasPointers(ptr unsafe.Pointer, n uintptr) { // Pass nil for the type since we don't have one here anyway. bulkBarrierPreWrite(uintptr(ptr), 0, n, nil) memclrNoHeapPointers(ptr, n) }