// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. //go:build !plan9 #include "go_asm.h" #include "textflag.h" #include "asm_amd64.h" // See memclrNoHeapPointers Go doc for important implementation constraints. // func memclrNoHeapPointers(ptr unsafe.Pointer, n uintptr) // ABIInternal for performance. TEXT runtime·memclrNoHeapPointers(SB), NOSPLIT, $0-16 // AX = ptr // BX = n MOVQ AX, DI // DI = ptr XORQ AX, AX // MOVOU seems always faster than REP STOSQ when Enhanced REP STOSQ is not available. tail: // BSR+branch table make almost all memmove/memclr benchmarks worse. Not worth doing. TESTQ BX, BX JEQ _0 CMPQ BX, $2 JBE _1or2 CMPQ BX, $4 JBE _3or4 CMPQ BX, $8 JB _5through7 JE _8 CMPQ BX, $16 JBE _9through16 CMPQ BX, $32 JBE _17through32 CMPQ BX, $64 JBE _33through64 CMPQ BX, $128 JBE _65through128 CMPQ BX, $256 JBE _129through256 CMPB internal∕cpu·X86+const_offsetX86HasERMS(SB), $1 // enhanced REP MOVSB/STOSB JNE skip_erms // If the size is less than 2kb, do not use ERMS as it has a big start-up cost. // Table 3-4. Relative Performance of Memcpy() Using ERMSB Vs. 128-bit AVX // in the Intel Optimization Guide shows better performance for ERMSB starting // from 2KB. Benchmarks show the similar threshold for REP STOS vs AVX. CMPQ BX, $2048 JAE loop_preheader_erms skip_erms: #ifndef hasAVX2 CMPB internal∕cpu·X86+const_offsetX86HasAVX2(SB), $1 JE loop_preheader_avx2 // TODO: for really big clears, use MOVNTDQ, even without AVX2. loop: MOVOU X15, 0(DI) MOVOU X15, 16(DI) MOVOU X15, 32(DI) MOVOU X15, 48(DI) MOVOU X15, 64(DI) MOVOU X15, 80(DI) MOVOU X15, 96(DI) MOVOU X15, 112(DI) MOVOU X15, 128(DI) MOVOU X15, 144(DI) MOVOU X15, 160(DI) MOVOU X15, 176(DI) MOVOU X15, 192(DI) MOVOU X15, 208(DI) MOVOU X15, 224(DI) MOVOU X15, 240(DI) SUBQ $256, BX ADDQ $256, DI CMPQ BX, $256 JAE loop JMP tail #endif loop_preheader_avx2: VPXOR X0, X0, X0 // For smaller sizes MOVNTDQ may be faster or slower depending on hardware. // For larger sizes it is always faster, even on dual Xeons with 30M cache. // TODO take into account actual LLC size. E. g. glibc uses LLC size/2. CMPQ BX, $0x2000000 JAE loop_preheader_avx2_huge loop_avx2: VMOVDQU Y0, 0(DI) VMOVDQU Y0, 32(DI) VMOVDQU Y0, 64(DI) VMOVDQU Y0, 96(DI) SUBQ $128, BX ADDQ $128, DI CMPQ BX, $128 JAE loop_avx2 VMOVDQU Y0, -32(DI)(BX*1) VMOVDQU Y0, -64(DI)(BX*1) VMOVDQU Y0, -96(DI)(BX*1) VMOVDQU Y0, -128(DI)(BX*1) VZEROUPPER RET loop_preheader_erms: #ifndef hasAVX2 CMPB internal∕cpu·X86+const_offsetX86HasAVX2(SB), $1 JNE loop_erms #endif VPXOR X0, X0, X0 // At this point both ERMS and AVX2 is supported. While REP STOS can use a no-RFO // write protocol, ERMS could show the same or slower performance comparing to // Non-Temporal Stores when the size is bigger than LLC depending on hardware. CMPQ BX, $0x2000000 JAE loop_preheader_avx2_huge loop_erms: // STOSQ is used to guarantee that the whole zeroed pointer-sized word is visible // for a memory subsystem as the GC requires this. MOVQ BX, CX SHRQ $3, CX ANDQ $7, BX REP; STOSQ JMP tail loop_preheader_avx2_huge: // Align to 32 byte boundary VMOVDQU Y0, 0(DI) MOVQ DI, SI ADDQ $32, DI ANDQ $~31, DI SUBQ DI, SI ADDQ SI, BX loop_avx2_huge: VMOVNTDQ Y0, 0(DI) VMOVNTDQ Y0, 32(DI) VMOVNTDQ Y0, 64(DI) VMOVNTDQ Y0, 96(DI) SUBQ $128, BX ADDQ $128, DI CMPQ BX, $128 JAE loop_avx2_huge // In the description of MOVNTDQ in [1] // "... fencing operation implemented with the SFENCE or MFENCE instruction // should be used in conjunction with MOVNTDQ instructions..." // [1] 64-ia-32-architectures-software-developer-manual-325462.pdf SFENCE VMOVDQU Y0, -32(DI)(BX*1) VMOVDQU Y0, -64(DI)(BX*1) VMOVDQU Y0, -96(DI)(BX*1) VMOVDQU Y0, -128(DI)(BX*1) VZEROUPPER RET _1or2: MOVB AX, (DI) MOVB AX, -1(DI)(BX*1) RET _0: RET _3or4: MOVW AX, (DI) MOVW AX, -2(DI)(BX*1) RET _5through7: MOVL AX, (DI) MOVL AX, -4(DI)(BX*1) RET _8: // We need a separate case for 8 to make sure we clear pointers atomically. MOVQ AX, (DI) RET _9through16: MOVQ AX, (DI) MOVQ AX, -8(DI)(BX*1) RET _17through32: MOVOU X15, (DI) MOVOU X15, -16(DI)(BX*1) RET _33through64: MOVOU X15, (DI) MOVOU X15, 16(DI) MOVOU X15, -32(DI)(BX*1) MOVOU X15, -16(DI)(BX*1) RET _65through128: MOVOU X15, (DI) MOVOU X15, 16(DI) MOVOU X15, 32(DI) MOVOU X15, 48(DI) MOVOU X15, -64(DI)(BX*1) MOVOU X15, -48(DI)(BX*1) MOVOU X15, -32(DI)(BX*1) MOVOU X15, -16(DI)(BX*1) RET _129through256: MOVOU X15, (DI) MOVOU X15, 16(DI) MOVOU X15, 32(DI) MOVOU X15, 48(DI) MOVOU X15, 64(DI) MOVOU X15, 80(DI) MOVOU X15, 96(DI) MOVOU X15, 112(DI) MOVOU X15, -128(DI)(BX*1) MOVOU X15, -112(DI)(BX*1) MOVOU X15, -96(DI)(BX*1) MOVOU X15, -80(DI)(BX*1) MOVOU X15, -64(DI)(BX*1) MOVOU X15, -48(DI)(BX*1) MOVOU X15, -32(DI)(BX*1) MOVOU X15, -16(DI)(BX*1) RET