// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runtime import ( "internal/abi" "internal/goarch" "runtime/internal/atomic" "unsafe" ) const ( _SS_DISABLE = 4 _SIG_BLOCK = 1 _SIG_UNBLOCK = 2 _SIG_SETMASK = 3 _NSIG = 33 _SI_USER = 0 // From NetBSD's _UC_SIGMASK = 0x01 _UC_CPU = 0x04 // From _LWP_DETACHED = 0x00000040 ) type mOS struct { waitsemacount uint32 } //go:noescape func setitimer(mode int32, new, old *itimerval) //go:noescape func sigaction(sig uint32, new, old *sigactiont) //go:noescape func sigaltstack(new, old *stackt) //go:noescape func sigprocmask(how int32, new, old *sigset) //go:noescape func sysctl(mib *uint32, miblen uint32, out *byte, size *uintptr, dst *byte, ndst uintptr) int32 func lwp_tramp() func raiseproc(sig uint32) func lwp_kill(tid int32, sig int) //go:noescape func getcontext(ctxt unsafe.Pointer) //go:noescape func lwp_create(ctxt unsafe.Pointer, flags uintptr, lwpid unsafe.Pointer) int32 //go:noescape func lwp_park(clockid, flags int32, ts *timespec, unpark int32, hint, unparkhint unsafe.Pointer) int32 //go:noescape func lwp_unpark(lwp int32, hint unsafe.Pointer) int32 func lwp_self() int32 func osyield() //go:nosplit func osyield_no_g() { osyield() } func kqueue() int32 //go:noescape func kevent(kq int32, ch *keventt, nch int32, ev *keventt, nev int32, ts *timespec) int32 func pipe2(flags int32) (r, w int32, errno int32) func fcntl(fd, cmd, arg int32) (ret int32, errno int32) func issetugid() int32 const ( _ESRCH = 3 _ETIMEDOUT = 60 // From NetBSD's _CLOCK_REALTIME = 0 _CLOCK_VIRTUAL = 1 _CLOCK_PROF = 2 _CLOCK_MONOTONIC = 3 _TIMER_RELTIME = 0 _TIMER_ABSTIME = 1 ) var sigset_all = sigset{[4]uint32{^uint32(0), ^uint32(0), ^uint32(0), ^uint32(0)}} // From NetBSD's const ( _CTL_KERN = 1 _KERN_OSREV = 3 _CTL_HW = 6 _HW_NCPU = 3 _HW_PAGESIZE = 7 _HW_NCPUONLINE = 16 ) func sysctlInt(mib []uint32) (int32, bool) { var out int32 nout := unsafe.Sizeof(out) ret := sysctl(&mib[0], uint32(len(mib)), (*byte)(unsafe.Pointer(&out)), &nout, nil, 0) if ret < 0 { return 0, false } return out, true } func getncpu() int32 { if n, ok := sysctlInt([]uint32{_CTL_HW, _HW_NCPUONLINE}); ok { return int32(n) } if n, ok := sysctlInt([]uint32{_CTL_HW, _HW_NCPU}); ok { return int32(n) } return 1 } func getPageSize() uintptr { mib := [2]uint32{_CTL_HW, _HW_PAGESIZE} out := uint32(0) nout := unsafe.Sizeof(out) ret := sysctl(&mib[0], 2, (*byte)(unsafe.Pointer(&out)), &nout, nil, 0) if ret >= 0 { return uintptr(out) } return 0 } func getOSRev() int { if osrev, ok := sysctlInt([]uint32{_CTL_KERN, _KERN_OSREV}); ok { return int(osrev) } return 0 } //go:nosplit func semacreate(mp *m) { } //go:nosplit func semasleep(ns int64) int32 { gp := getg() var deadline int64 if ns >= 0 { deadline = nanotime() + ns } for { v := atomic.Load(&gp.m.waitsemacount) if v > 0 { if atomic.Cas(&gp.m.waitsemacount, v, v-1) { return 0 // semaphore acquired } continue } // Sleep until unparked by semawakeup or timeout. var tsp *timespec var ts timespec if ns >= 0 { wait := deadline - nanotime() if wait <= 0 { return -1 } ts.setNsec(wait) tsp = &ts } ret := lwp_park(_CLOCK_MONOTONIC, _TIMER_RELTIME, tsp, 0, unsafe.Pointer(&gp.m.waitsemacount), nil) if ret == _ETIMEDOUT { return -1 } } } //go:nosplit func semawakeup(mp *m) { atomic.Xadd(&mp.waitsemacount, 1) // From NetBSD's _lwp_unpark(2) manual: // "If the target LWP is not currently waiting, it will return // immediately upon the next call to _lwp_park()." ret := lwp_unpark(int32(mp.procid), unsafe.Pointer(&mp.waitsemacount)) if ret != 0 && ret != _ESRCH { // semawakeup can be called on signal stack. systemstack(func() { print("thrwakeup addr=", &mp.waitsemacount, " sem=", mp.waitsemacount, " ret=", ret, "\n") }) } } // May run with m.p==nil, so write barriers are not allowed. // //go:nowritebarrier func newosproc(mp *m) { stk := unsafe.Pointer(mp.g0.stack.hi) if false { print("newosproc stk=", stk, " m=", mp, " g=", mp.g0, " id=", mp.id, " ostk=", &mp, "\n") } var uc ucontextt getcontext(unsafe.Pointer(&uc)) // _UC_SIGMASK does not seem to work here. // It would be nice if _UC_SIGMASK and _UC_STACK // worked so that we could do all the work setting // the sigmask and the stack here, instead of setting // the mask here and the stack in netbsdMstart. // For now do the blocking manually. uc.uc_flags = _UC_SIGMASK | _UC_CPU uc.uc_link = nil uc.uc_sigmask = sigset_all var oset sigset sigprocmask(_SIG_SETMASK, &sigset_all, &oset) lwp_mcontext_init(&uc.uc_mcontext, stk, mp, mp.g0, abi.FuncPCABI0(netbsdMstart)) ret := retryOnEAGAIN(func() int32 { errno := lwp_create(unsafe.Pointer(&uc), _LWP_DETACHED, unsafe.Pointer(&mp.procid)) // lwp_create returns negative errno return -errno }) sigprocmask(_SIG_SETMASK, &oset, nil) if ret != 0 { print("runtime: failed to create new OS thread (have ", mcount()-1, " already; errno=", ret, ")\n") if ret == _EAGAIN { println("runtime: may need to increase max user processes (ulimit -p)") } throw("runtime.newosproc") } } // mstart is the entry-point for new Ms. // It is written in assembly, uses ABI0, is marked TOPFRAME, and calls netbsdMstart0. func netbsdMstart() // netbsdMstart0 is the function call that starts executing a newly // created thread. On NetBSD, a new thread inherits the signal stack // of the creating thread. That confuses minit, so we remove that // signal stack here before calling the regular mstart. It's a bit // baroque to remove a signal stack here only to add one in minit, but // it's a simple change that keeps NetBSD working like other OS's. // At this point all signals are blocked, so there is no race. // //go:nosplit func netbsdMstart0() { st := stackt{ss_flags: _SS_DISABLE} sigaltstack(&st, nil) mstart0() } func osinit() { ncpu = getncpu() if physPageSize == 0 { physPageSize = getPageSize() } needSysmonWorkaround = getOSRev() < 902000000 // NetBSD 9.2 } var urandom_dev = []byte("/dev/urandom\x00") //go:nosplit func readRandom(r []byte) int { fd := open(&urandom_dev[0], 0 /* O_RDONLY */, 0) n := read(fd, unsafe.Pointer(&r[0]), int32(len(r))) closefd(fd) return int(n) } func goenvs() { goenvs_unix() } // Called to initialize a new m (including the bootstrap m). // Called on the parent thread (main thread in case of bootstrap), can allocate memory. func mpreinit(mp *m) { mp.gsignal = malg(32 * 1024) mp.gsignal.m = mp } // Called to initialize a new m (including the bootstrap m). // Called on the new thread, cannot allocate memory. func minit() { gp := getg() gp.m.procid = uint64(lwp_self()) // On NetBSD a thread created by pthread_create inherits the // signal stack of the creating thread. We always create a // new signal stack here, to avoid having two Go threads using // the same signal stack. This breaks the case of a thread // created in C that calls sigaltstack and then calls a Go // function, because we will lose track of the C code's // sigaltstack, but it's the best we can do. signalstack(&gp.m.gsignal.stack) gp.m.newSigstack = true minitSignalMask() } // Called from dropm to undo the effect of an minit. // //go:nosplit func unminit() { unminitSignals() // Don't clear procid, it is used by locking (semawake), and locking // must continue working after unminit. } // Called from exitm, but not from drop, to undo the effect of thread-owned // resources in minit, semacreate, or elsewhere. Do not take locks after calling this. func mdestroy(mp *m) { } func sigtramp() type sigactiont struct { sa_sigaction uintptr sa_mask sigset sa_flags int32 } //go:nosplit //go:nowritebarrierrec func setsig(i uint32, fn uintptr) { var sa sigactiont sa.sa_flags = _SA_SIGINFO | _SA_ONSTACK | _SA_RESTART sa.sa_mask = sigset_all if fn == abi.FuncPCABIInternal(sighandler) { // abi.FuncPCABIInternal(sighandler) matches the callers in signal_unix.go fn = abi.FuncPCABI0(sigtramp) } sa.sa_sigaction = fn sigaction(i, &sa, nil) } //go:nosplit //go:nowritebarrierrec func setsigstack(i uint32) { throw("setsigstack") } //go:nosplit //go:nowritebarrierrec func getsig(i uint32) uintptr { var sa sigactiont sigaction(i, nil, &sa) return sa.sa_sigaction } // setSignalstackSP sets the ss_sp field of a stackt. // //go:nosplit func setSignalstackSP(s *stackt, sp uintptr) { s.ss_sp = sp } //go:nosplit //go:nowritebarrierrec func sigaddset(mask *sigset, i int) { mask.__bits[(i-1)/32] |= 1 << ((uint32(i) - 1) & 31) } func sigdelset(mask *sigset, i int) { mask.__bits[(i-1)/32] &^= 1 << ((uint32(i) - 1) & 31) } //go:nosplit func (c *sigctxt) fixsigcode(sig uint32) { } func setProcessCPUProfiler(hz int32) { setProcessCPUProfilerTimer(hz) } func setThreadCPUProfiler(hz int32) { setThreadCPUProfilerHz(hz) } //go:nosplit func validSIGPROF(mp *m, c *sigctxt) bool { return true } func sysargs(argc int32, argv **byte) { n := argc + 1 // skip over argv, envp to get to auxv for argv_index(argv, n) != nil { n++ } // skip NULL separator n++ // now argv+n is auxv auxvp := (*[1 << 28]uintptr)(add(unsafe.Pointer(argv), uintptr(n)*goarch.PtrSize)) pairs := sysauxv(auxvp[:]) auxv = auxvp[: pairs*2 : pairs*2] } const ( _AT_NULL = 0 // Terminates the vector _AT_PAGESZ = 6 // Page size in bytes ) func sysauxv(auxv []uintptr) (pairs int) { var i int for i = 0; auxv[i] != _AT_NULL; i += 2 { tag, val := auxv[i], auxv[i+1] switch tag { case _AT_PAGESZ: physPageSize = val } } return i / 2 } // raise sends signal to the calling thread. // // It must be nosplit because it is used by the signal handler before // it definitely has a Go stack. // //go:nosplit func raise(sig uint32) { lwp_kill(lwp_self(), int(sig)) } func signalM(mp *m, sig int) { lwp_kill(int32(mp.procid), sig) } // sigPerThreadSyscall is only used on linux, so we assign a bogus signal // number. const sigPerThreadSyscall = 1 << 31 //go:nosplit func runPerThreadSyscall() { throw("runPerThreadSyscall only valid on linux") }