// Copyright 2012 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. //go:build linux && (386 || amd64 || arm || arm64 || loong64 || mips64 || mips64le || ppc64 || ppc64le || riscv64 || s390x) package runtime import "unsafe" // Look up symbols in the Linux vDSO. // This code was originally based on the sample Linux vDSO parser at // https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/tools/testing/selftests/vDSO/parse_vdso.c // This implements the ELF dynamic linking spec at // http://sco.com/developers/gabi/latest/ch5.dynamic.html // The version section is documented at // https://refspecs.linuxfoundation.org/LSB_3.2.0/LSB-Core-generic/LSB-Core-generic/symversion.html const ( _AT_SYSINFO_EHDR = 33 _PT_LOAD = 1 /* Loadable program segment */ _PT_DYNAMIC = 2 /* Dynamic linking information */ _DT_NULL = 0 /* Marks end of dynamic section */ _DT_HASH = 4 /* Dynamic symbol hash table */ _DT_STRTAB = 5 /* Address of string table */ _DT_SYMTAB = 6 /* Address of symbol table */ _DT_GNU_HASH = 0x6ffffef5 /* GNU-style dynamic symbol hash table */ _DT_VERSYM = 0x6ffffff0 _DT_VERDEF = 0x6ffffffc _VER_FLG_BASE = 0x1 /* Version definition of file itself */ _SHN_UNDEF = 0 /* Undefined section */ _SHT_DYNSYM = 11 /* Dynamic linker symbol table */ _STT_FUNC = 2 /* Symbol is a code object */ _STT_NOTYPE = 0 /* Symbol type is not specified */ _STB_GLOBAL = 1 /* Global symbol */ _STB_WEAK = 2 /* Weak symbol */ _EI_NIDENT = 16 // Maximum indices for the array types used when traversing the vDSO ELF structures. // Computed from architecture-specific max provided by vdso_linux_*.go vdsoSymTabSize = vdsoArrayMax / unsafe.Sizeof(elfSym{}) vdsoDynSize = vdsoArrayMax / unsafe.Sizeof(elfDyn{}) vdsoSymStringsSize = vdsoArrayMax // byte vdsoVerSymSize = vdsoArrayMax / 2 // uint16 vdsoHashSize = vdsoArrayMax / 4 // uint32 // vdsoBloomSizeScale is a scaling factor for gnuhash tables which are uint32 indexed, // but contain uintptrs vdsoBloomSizeScale = unsafe.Sizeof(uintptr(0)) / 4 // uint32 ) /* How to extract and insert information held in the st_info field. */ func _ELF_ST_BIND(val byte) byte { return val >> 4 } func _ELF_ST_TYPE(val byte) byte { return val & 0xf } type vdsoSymbolKey struct { name string symHash uint32 gnuHash uint32 ptr *uintptr } type vdsoVersionKey struct { version string verHash uint32 } type vdsoInfo struct { valid bool /* Load information */ loadAddr uintptr loadOffset uintptr /* loadAddr - recorded vaddr */ /* Symbol table */ symtab *[vdsoSymTabSize]elfSym symstrings *[vdsoSymStringsSize]byte chain []uint32 bucket []uint32 symOff uint32 isGNUHash bool /* Version table */ versym *[vdsoVerSymSize]uint16 verdef *elfVerdef } // see vdso_linux_*.go for vdsoSymbolKeys[] and vdso*Sym vars func vdsoInitFromSysinfoEhdr(info *vdsoInfo, hdr *elfEhdr) { info.valid = false info.loadAddr = uintptr(unsafe.Pointer(hdr)) pt := unsafe.Pointer(info.loadAddr + uintptr(hdr.e_phoff)) // We need two things from the segment table: the load offset // and the dynamic table. var foundVaddr bool var dyn *[vdsoDynSize]elfDyn for i := uint16(0); i < hdr.e_phnum; i++ { pt := (*elfPhdr)(add(pt, uintptr(i)*unsafe.Sizeof(elfPhdr{}))) switch pt.p_type { case _PT_LOAD: if !foundVaddr { foundVaddr = true info.loadOffset = info.loadAddr + uintptr(pt.p_offset-pt.p_vaddr) } case _PT_DYNAMIC: dyn = (*[vdsoDynSize]elfDyn)(unsafe.Pointer(info.loadAddr + uintptr(pt.p_offset))) } } if !foundVaddr || dyn == nil { return // Failed } // Fish out the useful bits of the dynamic table. var hash, gnuhash *[vdsoHashSize]uint32 info.symstrings = nil info.symtab = nil info.versym = nil info.verdef = nil for i := 0; dyn[i].d_tag != _DT_NULL; i++ { dt := &dyn[i] p := info.loadOffset + uintptr(dt.d_val) switch dt.d_tag { case _DT_STRTAB: info.symstrings = (*[vdsoSymStringsSize]byte)(unsafe.Pointer(p)) case _DT_SYMTAB: info.symtab = (*[vdsoSymTabSize]elfSym)(unsafe.Pointer(p)) case _DT_HASH: hash = (*[vdsoHashSize]uint32)(unsafe.Pointer(p)) case _DT_GNU_HASH: gnuhash = (*[vdsoHashSize]uint32)(unsafe.Pointer(p)) case _DT_VERSYM: info.versym = (*[vdsoVerSymSize]uint16)(unsafe.Pointer(p)) case _DT_VERDEF: info.verdef = (*elfVerdef)(unsafe.Pointer(p)) } } if info.symstrings == nil || info.symtab == nil || (hash == nil && gnuhash == nil) { return // Failed } if info.verdef == nil { info.versym = nil } if gnuhash != nil { // Parse the GNU hash table header. nbucket := gnuhash[0] info.symOff = gnuhash[1] bloomSize := gnuhash[2] info.bucket = gnuhash[4+bloomSize*uint32(vdsoBloomSizeScale):][:nbucket] info.chain = gnuhash[4+bloomSize*uint32(vdsoBloomSizeScale)+nbucket:] info.isGNUHash = true } else { // Parse the hash table header. nbucket := hash[0] nchain := hash[1] info.bucket = hash[2 : 2+nbucket] info.chain = hash[2+nbucket : 2+nbucket+nchain] } // That's all we need. info.valid = true } func vdsoFindVersion(info *vdsoInfo, ver *vdsoVersionKey) int32 { if !info.valid { return 0 } def := info.verdef for { if def.vd_flags&_VER_FLG_BASE == 0 { aux := (*elfVerdaux)(add(unsafe.Pointer(def), uintptr(def.vd_aux))) if def.vd_hash == ver.verHash && ver.version == gostringnocopy(&info.symstrings[aux.vda_name]) { return int32(def.vd_ndx & 0x7fff) } } if def.vd_next == 0 { break } def = (*elfVerdef)(add(unsafe.Pointer(def), uintptr(def.vd_next))) } return -1 // cannot match any version } func vdsoParseSymbols(info *vdsoInfo, version int32) { if !info.valid { return } apply := func(symIndex uint32, k vdsoSymbolKey) bool { sym := &info.symtab[symIndex] typ := _ELF_ST_TYPE(sym.st_info) bind := _ELF_ST_BIND(sym.st_info) // On ppc64x, VDSO functions are of type _STT_NOTYPE. if typ != _STT_FUNC && typ != _STT_NOTYPE || bind != _STB_GLOBAL && bind != _STB_WEAK || sym.st_shndx == _SHN_UNDEF { return false } if k.name != gostringnocopy(&info.symstrings[sym.st_name]) { return false } // Check symbol version. if info.versym != nil && version != 0 && int32(info.versym[symIndex]&0x7fff) != version { return false } *k.ptr = info.loadOffset + uintptr(sym.st_value) return true } if !info.isGNUHash { // Old-style DT_HASH table. for _, k := range vdsoSymbolKeys { if len(info.bucket) > 0 { for chain := info.bucket[k.symHash%uint32(len(info.bucket))]; chain != 0; chain = info.chain[chain] { if apply(chain, k) { break } } } } return } // New-style DT_GNU_HASH table. for _, k := range vdsoSymbolKeys { symIndex := info.bucket[k.gnuHash%uint32(len(info.bucket))] if symIndex < info.symOff { continue } for ; ; symIndex++ { hash := info.chain[symIndex-info.symOff] if hash|1 == k.gnuHash|1 { // Found a hash match. if apply(symIndex, k) { break } } if hash&1 != 0 { // End of chain. break } } } } func vdsoauxv(tag, val uintptr) { switch tag { case _AT_SYSINFO_EHDR: if val == 0 { // Something went wrong return } var info vdsoInfo // TODO(rsc): I don't understand why the compiler thinks info escapes // when passed to the three functions below. info1 := (*vdsoInfo)(noescape(unsafe.Pointer(&info))) vdsoInitFromSysinfoEhdr(info1, (*elfEhdr)(unsafe.Pointer(val))) vdsoParseSymbols(info1, vdsoFindVersion(info1, &vdsoLinuxVersion)) } } // vdsoMarker reports whether PC is on the VDSO page. // //go:nosplit func inVDSOPage(pc uintptr) bool { for _, k := range vdsoSymbolKeys { if *k.ptr != 0 { page := *k.ptr &^ (physPageSize - 1) return pc >= page && pc < page+physPageSize } } return false }