// Copyright 2012 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package strings // stringFinder efficiently finds strings in a source text. It's implemented // using the Boyer-Moore string search algorithm: // https://en.wikipedia.org/wiki/Boyer-Moore_string_search_algorithm // https://www.cs.utexas.edu/~moore/publications/fstrpos.pdf (note: this aged // document uses 1-based indexing) type stringFinder struct { // pattern is the string that we are searching for in the text. pattern string // badCharSkip[b] contains the distance between the last byte of pattern // and the rightmost occurrence of b in pattern. If b is not in pattern, // badCharSkip[b] is len(pattern). // // Whenever a mismatch is found with byte b in the text, we can safely // shift the matching frame at least badCharSkip[b] until the next time // the matching char could be in alignment. badCharSkip [256]int // goodSuffixSkip[i] defines how far we can shift the matching frame given // that the suffix pattern[i+1:] matches, but the byte pattern[i] does // not. There are two cases to consider: // // 1. The matched suffix occurs elsewhere in pattern (with a different // byte preceding it that we might possibly match). In this case, we can // shift the matching frame to align with the next suffix chunk. For // example, the pattern "mississi" has the suffix "issi" next occurring // (in right-to-left order) at index 1, so goodSuffixSkip[3] == // shift+len(suffix) == 3+4 == 7. // // 2. If the matched suffix does not occur elsewhere in pattern, then the // matching frame may share part of its prefix with the end of the // matching suffix. In this case, goodSuffixSkip[i] will contain how far // to shift the frame to align this portion of the prefix to the // suffix. For example, in the pattern "abcxxxabc", when the first // mismatch from the back is found to be in position 3, the matching // suffix "xxabc" is not found elsewhere in the pattern. However, its // rightmost "abc" (at position 6) is a prefix of the whole pattern, so // goodSuffixSkip[3] == shift+len(suffix) == 6+5 == 11. goodSuffixSkip []int } func makeStringFinder(pattern string) *stringFinder { f := &stringFinder{ pattern: pattern, goodSuffixSkip: make([]int, len(pattern)), } // last is the index of the last character in the pattern. last := len(pattern) - 1 // Build bad character table. // Bytes not in the pattern can skip one pattern's length. for i := range f.badCharSkip { f.badCharSkip[i] = len(pattern) } // The loop condition is < instead of <= so that the last byte does not // have a zero distance to itself. Finding this byte out of place implies // that it is not in the last position. for i := 0; i < last; i++ { f.badCharSkip[pattern[i]] = last - i } // Build good suffix table. // First pass: set each value to the next index which starts a prefix of // pattern. lastPrefix := last for i := last; i >= 0; i-- { if HasPrefix(pattern, pattern[i+1:]) { lastPrefix = i + 1 } // lastPrefix is the shift, and (last-i) is len(suffix). f.goodSuffixSkip[i] = lastPrefix + last - i } // Second pass: find repeats of pattern's suffix starting from the front. for i := 0; i < last; i++ { lenSuffix := longestCommonSuffix(pattern, pattern[1:i+1]) if pattern[i-lenSuffix] != pattern[last-lenSuffix] { // (last-i) is the shift, and lenSuffix is len(suffix). f.goodSuffixSkip[last-lenSuffix] = lenSuffix + last - i } } return f } func longestCommonSuffix(a, b string) (i int) { for ; i < len(a) && i < len(b); i++ { if a[len(a)-1-i] != b[len(b)-1-i] { break } } return } // next returns the index in text of the first occurrence of the pattern. If // the pattern is not found, it returns -1. func (f *stringFinder) next(text string) int { i := len(f.pattern) - 1 for i < len(text) { // Compare backwards from the end until the first unmatching character. j := len(f.pattern) - 1 for j >= 0 && text[i] == f.pattern[j] { i-- j-- } if j < 0 { return i + 1 // match } i += max(f.badCharSkip[text[i]], f.goodSuffixSkip[j]) } return -1 }