// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package unicode provides data and functions to test some properties of // Unicode code points. package unicode const ( MaxRune = '\U0010FFFF' // Maximum valid Unicode code point. ReplacementChar = '\uFFFD' // Represents invalid code points. MaxASCII = '\u007F' // maximum ASCII value. MaxLatin1 = '\u00FF' // maximum Latin-1 value. ) // RangeTable defines a set of Unicode code points by listing the ranges of // code points within the set. The ranges are listed in two slices // to save space: a slice of 16-bit ranges and a slice of 32-bit ranges. // The two slices must be in sorted order and non-overlapping. // Also, R32 should contain only values >= 0x10000 (1<<16). type RangeTable struct { R16 []Range16 R32 []Range32 LatinOffset int // number of entries in R16 with Hi <= MaxLatin1 } // Range16 represents of a range of 16-bit Unicode code points. The range runs from Lo to Hi // inclusive and has the specified stride. type Range16 struct { Lo uint16 Hi uint16 Stride uint16 } // Range32 represents of a range of Unicode code points and is used when one or // more of the values will not fit in 16 bits. The range runs from Lo to Hi // inclusive and has the specified stride. Lo and Hi must always be >= 1<<16. type Range32 struct { Lo uint32 Hi uint32 Stride uint32 } // CaseRange represents a range of Unicode code points for simple (one // code point to one code point) case conversion. // The range runs from Lo to Hi inclusive, with a fixed stride of 1. Deltas // are the number to add to the code point to reach the code point for a // different case for that character. They may be negative. If zero, it // means the character is in the corresponding case. There is a special // case representing sequences of alternating corresponding Upper and Lower // pairs. It appears with a fixed Delta of // // {UpperLower, UpperLower, UpperLower} // // The constant UpperLower has an otherwise impossible delta value. type CaseRange struct { Lo uint32 Hi uint32 Delta d } // SpecialCase represents language-specific case mappings such as Turkish. // Methods of SpecialCase customize (by overriding) the standard mappings. type SpecialCase []CaseRange // BUG(r): There is no mechanism for full case folding, that is, for // characters that involve multiple runes in the input or output. // Indices into the Delta arrays inside CaseRanges for case mapping. const ( UpperCase = iota LowerCase TitleCase MaxCase ) type d [MaxCase]rune // to make the CaseRanges text shorter // If the Delta field of a [CaseRange] is UpperLower, it means // this CaseRange represents a sequence of the form (say) // [Upper] [Lower] [Upper] [Lower]. const ( UpperLower = MaxRune + 1 // (Cannot be a valid delta.) ) // linearMax is the maximum size table for linear search for non-Latin1 rune. // Derived by running 'go test -calibrate'. const linearMax = 18 // is16 reports whether r is in the sorted slice of 16-bit ranges. func is16(ranges []Range16, r uint16) bool { if len(ranges) <= linearMax || r <= MaxLatin1 { for i := range ranges { range_ := &ranges[i] if r < range_.Lo { return false } if r <= range_.Hi { return range_.Stride == 1 || (r-range_.Lo)%range_.Stride == 0 } } return false } // binary search over ranges lo := 0 hi := len(ranges) for lo < hi { m := int(uint(lo+hi) >> 1) range_ := &ranges[m] if range_.Lo <= r && r <= range_.Hi { return range_.Stride == 1 || (r-range_.Lo)%range_.Stride == 0 } if r < range_.Lo { hi = m } else { lo = m + 1 } } return false } // is32 reports whether r is in the sorted slice of 32-bit ranges. func is32(ranges []Range32, r uint32) bool { if len(ranges) <= linearMax { for i := range ranges { range_ := &ranges[i] if r < range_.Lo { return false } if r <= range_.Hi { return range_.Stride == 1 || (r-range_.Lo)%range_.Stride == 0 } } return false } // binary search over ranges lo := 0 hi := len(ranges) for lo < hi { m := int(uint(lo+hi) >> 1) range_ := ranges[m] if range_.Lo <= r && r <= range_.Hi { return range_.Stride == 1 || (r-range_.Lo)%range_.Stride == 0 } if r < range_.Lo { hi = m } else { lo = m + 1 } } return false } // Is reports whether the rune is in the specified table of ranges. func Is(rangeTab *RangeTable, r rune) bool { r16 := rangeTab.R16 // Compare as uint32 to correctly handle negative runes. if len(r16) > 0 && uint32(r) <= uint32(r16[len(r16)-1].Hi) { return is16(r16, uint16(r)) } r32 := rangeTab.R32 if len(r32) > 0 && r >= rune(r32[0].Lo) { return is32(r32, uint32(r)) } return false } func isExcludingLatin(rangeTab *RangeTable, r rune) bool { r16 := rangeTab.R16 // Compare as uint32 to correctly handle negative runes. if off := rangeTab.LatinOffset; len(r16) > off && uint32(r) <= uint32(r16[len(r16)-1].Hi) { return is16(r16[off:], uint16(r)) } r32 := rangeTab.R32 if len(r32) > 0 && r >= rune(r32[0].Lo) { return is32(r32, uint32(r)) } return false } // IsUpper reports whether the rune is an upper case letter. func IsUpper(r rune) bool { // See comment in IsGraphic. if uint32(r) <= MaxLatin1 { return properties[uint8(r)]&pLmask == pLu } return isExcludingLatin(Upper, r) } // IsLower reports whether the rune is a lower case letter. func IsLower(r rune) bool { // See comment in IsGraphic. if uint32(r) <= MaxLatin1 { return properties[uint8(r)]&pLmask == pLl } return isExcludingLatin(Lower, r) } // IsTitle reports whether the rune is a title case letter. func IsTitle(r rune) bool { if r <= MaxLatin1 { return false } return isExcludingLatin(Title, r) } // to maps the rune using the specified case mapping. // It additionally reports whether caseRange contained a mapping for r. func to(_case int, r rune, caseRange []CaseRange) (mappedRune rune, foundMapping bool) { if _case < 0 || MaxCase <= _case { return ReplacementChar, false // as reasonable an error as any } // binary search over ranges lo := 0 hi := len(caseRange) for lo < hi { m := int(uint(lo+hi) >> 1) cr := caseRange[m] if rune(cr.Lo) <= r && r <= rune(cr.Hi) { delta := cr.Delta[_case] if delta > MaxRune { // In an Upper-Lower sequence, which always starts with // an UpperCase letter, the real deltas always look like: // {0, 1, 0} UpperCase (Lower is next) // {-1, 0, -1} LowerCase (Upper, Title are previous) // The characters at even offsets from the beginning of the // sequence are upper case; the ones at odd offsets are lower. // The correct mapping can be done by clearing or setting the low // bit in the sequence offset. // The constants UpperCase and TitleCase are even while LowerCase // is odd so we take the low bit from _case. return rune(cr.Lo) + ((r-rune(cr.Lo))&^1 | rune(_case&1)), true } return r + delta, true } if r < rune(cr.Lo) { hi = m } else { lo = m + 1 } } return r, false } // To maps the rune to the specified case: [UpperCase], [LowerCase], or [TitleCase]. func To(_case int, r rune) rune { r, _ = to(_case, r, CaseRanges) return r } // ToUpper maps the rune to upper case. func ToUpper(r rune) rune { if r <= MaxASCII { if 'a' <= r && r <= 'z' { r -= 'a' - 'A' } return r } return To(UpperCase, r) } // ToLower maps the rune to lower case. func ToLower(r rune) rune { if r <= MaxASCII { if 'A' <= r && r <= 'Z' { r += 'a' - 'A' } return r } return To(LowerCase, r) } // ToTitle maps the rune to title case. func ToTitle(r rune) rune { if r <= MaxASCII { if 'a' <= r && r <= 'z' { // title case is upper case for ASCII r -= 'a' - 'A' } return r } return To(TitleCase, r) } // ToUpper maps the rune to upper case giving priority to the special mapping. func (special SpecialCase) ToUpper(r rune) rune { r1, hadMapping := to(UpperCase, r, []CaseRange(special)) if r1 == r && !hadMapping { r1 = ToUpper(r) } return r1 } // ToTitle maps the rune to title case giving priority to the special mapping. func (special SpecialCase) ToTitle(r rune) rune { r1, hadMapping := to(TitleCase, r, []CaseRange(special)) if r1 == r && !hadMapping { r1 = ToTitle(r) } return r1 } // ToLower maps the rune to lower case giving priority to the special mapping. func (special SpecialCase) ToLower(r rune) rune { r1, hadMapping := to(LowerCase, r, []CaseRange(special)) if r1 == r && !hadMapping { r1 = ToLower(r) } return r1 } // caseOrbit is defined in tables.go as []foldPair. Right now all the // entries fit in uint16, so use uint16. If that changes, compilation // will fail (the constants in the composite literal will not fit in uint16) // and the types here can change to uint32. type foldPair struct { From uint16 To uint16 } // SimpleFold iterates over Unicode code points equivalent under // the Unicode-defined simple case folding. Among the code points // equivalent to rune (including rune itself), SimpleFold returns the // smallest rune > r if one exists, or else the smallest rune >= 0. // If r is not a valid Unicode code point, SimpleFold(r) returns r. // // For example: // // SimpleFold('A') = 'a' // SimpleFold('a') = 'A' // // SimpleFold('K') = 'k' // SimpleFold('k') = '\u212A' (Kelvin symbol, K) // SimpleFold('\u212A') = 'K' // // SimpleFold('1') = '1' // // SimpleFold(-2) = -2 func SimpleFold(r rune) rune { if r < 0 || r > MaxRune { return r } if int(r) < len(asciiFold) { return rune(asciiFold[r]) } // Consult caseOrbit table for special cases. lo := 0 hi := len(caseOrbit) for lo < hi { m := int(uint(lo+hi) >> 1) if rune(caseOrbit[m].From) < r { lo = m + 1 } else { hi = m } } if lo < len(caseOrbit) && rune(caseOrbit[lo].From) == r { return rune(caseOrbit[lo].To) } // No folding specified. This is a one- or two-element // equivalence class containing rune and ToLower(rune) // and ToUpper(rune) if they are different from rune. if l := ToLower(r); l != r { return l } return ToUpper(r) }