// Copyright 2021 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package a type Numeric interface { ~int | ~int8 | ~int16 | ~int32 | ~int64 | ~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr | ~float32 | ~float64 | ~complex64 | ~complex128 } // numericAbs matches numeric types with an Abs method. type numericAbs[T any] interface { Numeric Abs() T } // AbsDifference computes the absolute value of the difference of // a and b, where the absolute value is determined by the Abs method. func absDifference[T numericAbs[T]](a, b T) T { d := a - b return d.Abs() } // orderedNumeric matches numeric types that support the < operator. type orderedNumeric interface { ~int | ~int8 | ~int16 | ~int32 | ~int64 | ~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr | ~float32 | ~float64 } // Complex matches the two complex types, which do not have a < operator. type Complex interface { ~complex64 | ~complex128 } // For now, a lone type parameter is not permitted as RHS in a type declaration (issue #45639). // // orderedAbs is a helper type that defines an Abs method for // // ordered numeric types. // type orderedAbs[T orderedNumeric] T // // func (a orderedAbs[T]) Abs() orderedAbs[T] { // if a < 0 { // return -a // } // return a // } // // // complexAbs is a helper type that defines an Abs method for // // complex types. // type complexAbs[T Complex] T // // func (a complexAbs[T]) Abs() complexAbs[T] { // r := float64(real(a)) // i := float64(imag(a)) // d := math.Sqrt(r*r + i*i) // return complexAbs[T](complex(d, 0)) // } // // // OrderedAbsDifference returns the absolute value of the difference // // between a and b, where a and b are of an ordered type. // func OrderedAbsDifference[T orderedNumeric](a, b T) T { // return T(absDifference(orderedAbs[T](a), orderedAbs[T](b))) // } // // // ComplexAbsDifference returns the absolute value of the difference // // between a and b, where a and b are of a complex type. // func ComplexAbsDifference[T Complex](a, b T) T { // return T(absDifference(complexAbs[T](a), complexAbs[T](b))) // }