// run // Copyright 2021 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package orderedmap provides an ordered map, implemented as a binary tree. package main import ( "bytes" "context" "fmt" "runtime" ) type Ordered interface { ~int | ~int8 | ~int16 | ~int32 | ~int64 | ~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr | ~float32 | ~float64 | ~string } // _Map is an ordered map. type _Map[K, V any] struct { root *node[K, V] compare func(K, K) int } // node is the type of a node in the binary tree. type node[K, V any] struct { key K val V left, right *node[K, V] } // _New returns a new map. It takes a comparison function that compares two // keys and returns < 0 if the first is less, == 0 if they are equal, // > 0 if the first is greater. func _New[K, V any](compare func(K, K) int) *_Map[K, V] { return &_Map[K, V]{compare: compare} } // _NewOrdered returns a new map whose key is an ordered type. // This is like _New, but does not require providing a compare function. // The map compare function uses the obvious key ordering. func _NewOrdered[K Ordered, V any]() *_Map[K, V] { return _New[K, V](func(k1, k2 K) int { switch { case k1 < k2: return -1 case k1 == k2: return 0 default: return 1 } }) } // find looks up key in the map, returning either a pointer to the slot of the // node holding key, or a pointer to the slot where should a node would go. func (m *_Map[K, V]) find(key K) **node[K, V] { pn := &m.root for *pn != nil { switch cmp := m.compare(key, (*pn).key); { case cmp < 0: pn = &(*pn).left case cmp > 0: pn = &(*pn).right default: return pn } } return pn } // Insert inserts a new key/value into the map. // If the key is already present, the value is replaced. // Reports whether this is a new key. func (m *_Map[K, V]) Insert(key K, val V) bool { pn := m.find(key) if *pn != nil { (*pn).val = val return false } *pn = &node[K, V]{key: key, val: val} return true } // Find returns the value associated with a key, or the zero value // if not present. The found result reports whether the key was found. func (m *_Map[K, V]) Find(key K) (V, bool) { pn := m.find(key) if *pn == nil { var zero V return zero, false } return (*pn).val, true } // keyValue is a pair of key and value used while iterating. type keyValue[K, V any] struct { key K val V } // iterate returns an iterator that traverses the map. func (m *_Map[K, V]) Iterate() *_Iterator[K, V] { sender, receiver := _Ranger[keyValue[K, V]]() var f func(*node[K, V]) bool f = func(n *node[K, V]) bool { if n == nil { return true } // Stop the traversal if Send fails, which means that // nothing is listening to the receiver. return f(n.left) && sender.Send(context.Background(), keyValue[K, V]{n.key, n.val}) && f(n.right) } go func() { f(m.root) sender.Close() }() return &_Iterator[K, V]{receiver} } // _Iterator is used to iterate over the map. type _Iterator[K, V any] struct { r *_Receiver[keyValue[K, V]] } // Next returns the next key and value pair, and a boolean that reports // whether they are valid. If not valid, we have reached the end of the map. func (it *_Iterator[K, V]) Next() (K, V, bool) { keyval, ok := it.r.Next(context.Background()) if !ok { var zerok K var zerov V return zerok, zerov, false } return keyval.key, keyval.val, true } func TestMap() { m := _New[[]byte, int](bytes.Compare) if _, found := m.Find([]byte("a")); found { panic(fmt.Sprintf("unexpectedly found %q in empty map", []byte("a"))) } if !m.Insert([]byte("a"), 'a') { panic(fmt.Sprintf("key %q unexpectedly already present", []byte("a"))) } if !m.Insert([]byte("c"), 'c') { panic(fmt.Sprintf("key %q unexpectedly already present", []byte("c"))) } if !m.Insert([]byte("b"), 'b') { panic(fmt.Sprintf("key %q unexpectedly already present", []byte("b"))) } if m.Insert([]byte("c"), 'x') { panic(fmt.Sprintf("key %q unexpectedly not present", []byte("c"))) } if v, found := m.Find([]byte("a")); !found { panic(fmt.Sprintf("did not find %q", []byte("a"))) } else if v != 'a' { panic(fmt.Sprintf("key %q returned wrong value %c, expected %c", []byte("a"), v, 'a')) } if v, found := m.Find([]byte("c")); !found { panic(fmt.Sprintf("did not find %q", []byte("c"))) } else if v != 'x' { panic(fmt.Sprintf("key %q returned wrong value %c, expected %c", []byte("c"), v, 'x')) } if _, found := m.Find([]byte("d")); found { panic(fmt.Sprintf("unexpectedly found %q", []byte("d"))) } gather := func(it *_Iterator[[]byte, int]) []int { var r []int for { _, v, ok := it.Next() if !ok { return r } r = append(r, v) } } got := gather(m.Iterate()) want := []int{'a', 'b', 'x'} if !_SliceEqual(got, want) { panic(fmt.Sprintf("Iterate returned %v, want %v", got, want)) } } func main() { TestMap() } // _Equal reports whether two slices are equal: the same length and all // elements equal. All floating point NaNs are considered equal. func _SliceEqual[Elem comparable](s1, s2 []Elem) bool { if len(s1) != len(s2) { return false } for i, v1 := range s1 { v2 := s2[i] if v1 != v2 { isNaN := func(f Elem) bool { return f != f } if !isNaN(v1) || !isNaN(v2) { return false } } } return true } // Ranger returns a Sender and a Receiver. The Receiver provides a // Next method to retrieve values. The Sender provides a Send method // to send values and a Close method to stop sending values. The Next // method indicates when the Sender has been closed, and the Send // method indicates when the Receiver has been freed. // // This is a convenient way to exit a goroutine sending values when // the receiver stops reading them. func _Ranger[Elem any]() (*_Sender[Elem], *_Receiver[Elem]) { c := make(chan Elem) d := make(chan struct{}) s := &_Sender[Elem]{ values: c, done: d, } r := &_Receiver[Elem]{ values: c, done: d, } runtime.SetFinalizer(r, (*_Receiver[Elem]).finalize) return s, r } // A _Sender is used to send values to a Receiver. type _Sender[Elem any] struct { values chan<- Elem done <-chan struct{} } // Send sends a value to the receiver. It reports whether the value was sent. // The value will not be sent if the context is closed or the receiver // is freed. func (s *_Sender[Elem]) Send(ctx context.Context, v Elem) bool { select { case <-ctx.Done(): return false case s.values <- v: return true case <-s.done: return false } } // Close tells the receiver that no more values will arrive. // After Close is called, the _Sender may no longer be used. func (s *_Sender[Elem]) Close() { close(s.values) } // A _Receiver receives values from a _Sender. type _Receiver[Elem any] struct { values <-chan Elem done chan<- struct{} } // Next returns the next value from the channel. The bool result indicates // whether the value is valid. func (r *_Receiver[Elem]) Next(ctx context.Context) (v Elem, ok bool) { select { case <-ctx.Done(): case v, ok = <-r.values: } return v, ok } // finalize is a finalizer for the receiver. func (r *_Receiver[Elem]) finalize() { close(r.done) }