Source file src/encoding/json/encode.go

     1  // Copyright 2010 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package json implements encoding and decoding of JSON as defined in
     6  // RFC 7159. The mapping between JSON and Go values is described
     7  // in the documentation for the Marshal and Unmarshal functions.
     8  //
     9  // See "JSON and Go" for an introduction to this package:
    10  // https://golang.org/doc/articles/json_and_go.html
    11  package json
    12  
    13  import (
    14  	"bytes"
    15  	"encoding"
    16  	"encoding/base64"
    17  	"fmt"
    18  	"math"
    19  	"reflect"
    20  	"sort"
    21  	"strconv"
    22  	"strings"
    23  	"sync"
    24  	"unicode"
    25  	"unicode/utf8"
    26  )
    27  
    28  // Marshal returns the JSON encoding of v.
    29  //
    30  // Marshal traverses the value v recursively.
    31  // If an encountered value implements the Marshaler interface
    32  // and is not a nil pointer, Marshal calls its MarshalJSON method
    33  // to produce JSON. If no MarshalJSON method is present but the
    34  // value implements encoding.TextMarshaler instead, Marshal calls
    35  // its MarshalText method and encodes the result as a JSON string.
    36  // The nil pointer exception is not strictly necessary
    37  // but mimics a similar, necessary exception in the behavior of
    38  // UnmarshalJSON.
    39  //
    40  // Otherwise, Marshal uses the following type-dependent default encodings:
    41  //
    42  // Boolean values encode as JSON booleans.
    43  //
    44  // Floating point, integer, and Number values encode as JSON numbers.
    45  //
    46  // String values encode as JSON strings coerced to valid UTF-8,
    47  // replacing invalid bytes with the Unicode replacement rune.
    48  // So that the JSON will be safe to embed inside HTML <script> tags,
    49  // the string is encoded using HTMLEscape,
    50  // which replaces "<", ">", "&", U+2028, and U+2029 are escaped
    51  // to "\u003c","\u003e", "\u0026", "\u2028", and "\u2029".
    52  // This replacement can be disabled when using an Encoder,
    53  // by calling SetEscapeHTML(false).
    54  //
    55  // Array and slice values encode as JSON arrays, except that
    56  // []byte encodes as a base64-encoded string, and a nil slice
    57  // encodes as the null JSON value.
    58  //
    59  // Struct values encode as JSON objects.
    60  // Each exported struct field becomes a member of the object, using the
    61  // field name as the object key, unless the field is omitted for one of the
    62  // reasons given below.
    63  //
    64  // The encoding of each struct field can be customized by the format string
    65  // stored under the "json" key in the struct field's tag.
    66  // The format string gives the name of the field, possibly followed by a
    67  // comma-separated list of options. The name may be empty in order to
    68  // specify options without overriding the default field name.
    69  //
    70  // The "omitempty" option specifies that the field should be omitted
    71  // from the encoding if the field has an empty value, defined as
    72  // false, 0, a nil pointer, a nil interface value, and any empty array,
    73  // slice, map, or string.
    74  //
    75  // As a special case, if the field tag is "-", the field is always omitted.
    76  // Note that a field with name "-" can still be generated using the tag "-,".
    77  //
    78  // Examples of struct field tags and their meanings:
    79  //
    80  //   // Field appears in JSON as key "myName".
    81  //   Field int `json:"myName"`
    82  //
    83  //   // Field appears in JSON as key "myName" and
    84  //   // the field is omitted from the object if its value is empty,
    85  //   // as defined above.
    86  //   Field int `json:"myName,omitempty"`
    87  //
    88  //   // Field appears in JSON as key "Field" (the default), but
    89  //   // the field is skipped if empty.
    90  //   // Note the leading comma.
    91  //   Field int `json:",omitempty"`
    92  //
    93  //   // Field is ignored by this package.
    94  //   Field int `json:"-"`
    95  //
    96  //   // Field appears in JSON as key "-".
    97  //   Field int `json:"-,"`
    98  //
    99  // The "string" option signals that a field is stored as JSON inside a
   100  // JSON-encoded string. It applies only to fields of string, floating point,
   101  // integer, or boolean types. This extra level of encoding is sometimes used
   102  // when communicating with JavaScript programs:
   103  //
   104  //    Int64String int64 `json:",string"`
   105  //
   106  // The key name will be used if it's a non-empty string consisting of
   107  // only Unicode letters, digits, and ASCII punctuation except quotation
   108  // marks, backslash, and comma.
   109  //
   110  // Anonymous struct fields are usually marshaled as if their inner exported fields
   111  // were fields in the outer struct, subject to the usual Go visibility rules amended
   112  // as described in the next paragraph.
   113  // An anonymous struct field with a name given in its JSON tag is treated as
   114  // having that name, rather than being anonymous.
   115  // An anonymous struct field of interface type is treated the same as having
   116  // that type as its name, rather than being anonymous.
   117  //
   118  // The Go visibility rules for struct fields are amended for JSON when
   119  // deciding which field to marshal or unmarshal. If there are
   120  // multiple fields at the same level, and that level is the least
   121  // nested (and would therefore be the nesting level selected by the
   122  // usual Go rules), the following extra rules apply:
   123  //
   124  // 1) Of those fields, if any are JSON-tagged, only tagged fields are considered,
   125  // even if there are multiple untagged fields that would otherwise conflict.
   126  //
   127  // 2) If there is exactly one field (tagged or not according to the first rule), that is selected.
   128  //
   129  // 3) Otherwise there are multiple fields, and all are ignored; no error occurs.
   130  //
   131  // Handling of anonymous struct fields is new in Go 1.1.
   132  // Prior to Go 1.1, anonymous struct fields were ignored. To force ignoring of
   133  // an anonymous struct field in both current and earlier versions, give the field
   134  // a JSON tag of "-".
   135  //
   136  // Map values encode as JSON objects. The map's key type must either be a
   137  // string, an integer type, or implement encoding.TextMarshaler. The map keys
   138  // are sorted and used as JSON object keys by applying the following rules,
   139  // subject to the UTF-8 coercion described for string values above:
   140  //   - keys of any string type are used directly
   141  //   - encoding.TextMarshalers are marshaled
   142  //   - integer keys are converted to strings
   143  //
   144  // Pointer values encode as the value pointed to.
   145  // A nil pointer encodes as the null JSON value.
   146  //
   147  // Interface values encode as the value contained in the interface.
   148  // A nil interface value encodes as the null JSON value.
   149  //
   150  // Channel, complex, and function values cannot be encoded in JSON.
   151  // Attempting to encode such a value causes Marshal to return
   152  // an UnsupportedTypeError.
   153  //
   154  // JSON cannot represent cyclic data structures and Marshal does not
   155  // handle them. Passing cyclic structures to Marshal will result in
   156  // an error.
   157  //
   158  func Marshal(v interface{}) ([]byte, error) {
   159  	e := newEncodeState()
   160  
   161  	err := e.marshal(v, encOpts{escapeHTML: true})
   162  	if err != nil {
   163  		return nil, err
   164  	}
   165  	buf := append([]byte(nil), e.Bytes()...)
   166  
   167  	encodeStatePool.Put(e)
   168  
   169  	return buf, nil
   170  }
   171  
   172  // MarshalIndent is like Marshal but applies Indent to format the output.
   173  // Each JSON element in the output will begin on a new line beginning with prefix
   174  // followed by one or more copies of indent according to the indentation nesting.
   175  func MarshalIndent(v interface{}, prefix, indent string) ([]byte, error) {
   176  	b, err := Marshal(v)
   177  	if err != nil {
   178  		return nil, err
   179  	}
   180  	var buf bytes.Buffer
   181  	err = Indent(&buf, b, prefix, indent)
   182  	if err != nil {
   183  		return nil, err
   184  	}
   185  	return buf.Bytes(), nil
   186  }
   187  
   188  // HTMLEscape appends to dst the JSON-encoded src with <, >, &, U+2028 and U+2029
   189  // characters inside string literals changed to \u003c, \u003e, \u0026, \u2028, \u2029
   190  // so that the JSON will be safe to embed inside HTML <script> tags.
   191  // For historical reasons, web browsers don't honor standard HTML
   192  // escaping within <script> tags, so an alternative JSON encoding must
   193  // be used.
   194  func HTMLEscape(dst *bytes.Buffer, src []byte) {
   195  	// The characters can only appear in string literals,
   196  	// so just scan the string one byte at a time.
   197  	start := 0
   198  	for i, c := range src {
   199  		if c == '<' || c == '>' || c == '&' {
   200  			if start < i {
   201  				dst.Write(src[start:i])
   202  			}
   203  			dst.WriteString(`\u00`)
   204  			dst.WriteByte(hex[c>>4])
   205  			dst.WriteByte(hex[c&0xF])
   206  			start = i + 1
   207  		}
   208  		// Convert U+2028 and U+2029 (E2 80 A8 and E2 80 A9).
   209  		if c == 0xE2 && i+2 < len(src) && src[i+1] == 0x80 && src[i+2]&^1 == 0xA8 {
   210  			if start < i {
   211  				dst.Write(src[start:i])
   212  			}
   213  			dst.WriteString(`\u202`)
   214  			dst.WriteByte(hex[src[i+2]&0xF])
   215  			start = i + 3
   216  		}
   217  	}
   218  	if start < len(src) {
   219  		dst.Write(src[start:])
   220  	}
   221  }
   222  
   223  // Marshaler is the interface implemented by types that
   224  // can marshal themselves into valid JSON.
   225  type Marshaler interface {
   226  	MarshalJSON() ([]byte, error)
   227  }
   228  
   229  // An UnsupportedTypeError is returned by Marshal when attempting
   230  // to encode an unsupported value type.
   231  type UnsupportedTypeError struct {
   232  	Type reflect.Type
   233  }
   234  
   235  func (e *UnsupportedTypeError) Error() string {
   236  	return "json: unsupported type: " + e.Type.String()
   237  }
   238  
   239  // An UnsupportedValueError is returned by Marshal when attempting
   240  // to encode an unsupported value.
   241  type UnsupportedValueError struct {
   242  	Value reflect.Value
   243  	Str   string
   244  }
   245  
   246  func (e *UnsupportedValueError) Error() string {
   247  	return "json: unsupported value: " + e.Str
   248  }
   249  
   250  // Before Go 1.2, an InvalidUTF8Error was returned by Marshal when
   251  // attempting to encode a string value with invalid UTF-8 sequences.
   252  // As of Go 1.2, Marshal instead coerces the string to valid UTF-8 by
   253  // replacing invalid bytes with the Unicode replacement rune U+FFFD.
   254  //
   255  // Deprecated: No longer used; kept for compatibility.
   256  type InvalidUTF8Error struct {
   257  	S string // the whole string value that caused the error
   258  }
   259  
   260  func (e *InvalidUTF8Error) Error() string {
   261  	return "json: invalid UTF-8 in string: " + strconv.Quote(e.S)
   262  }
   263  
   264  // A MarshalerError represents an error from calling a MarshalJSON or MarshalText method.
   265  type MarshalerError struct {
   266  	Type       reflect.Type
   267  	Err        error
   268  	sourceFunc string
   269  }
   270  
   271  func (e *MarshalerError) Error() string {
   272  	srcFunc := e.sourceFunc
   273  	if srcFunc == "" {
   274  		srcFunc = "MarshalJSON"
   275  	}
   276  	return "json: error calling " + srcFunc +
   277  		" for type " + e.Type.String() +
   278  		": " + e.Err.Error()
   279  }
   280  
   281  // Unwrap returns the underlying error.
   282  func (e *MarshalerError) Unwrap() error { return e.Err }
   283  
   284  var hex = "0123456789abcdef"
   285  
   286  // An encodeState encodes JSON into a bytes.Buffer.
   287  type encodeState struct {
   288  	bytes.Buffer // accumulated output
   289  	scratch      [64]byte
   290  
   291  	// Keep track of what pointers we've seen in the current recursive call
   292  	// path, to avoid cycles that could lead to a stack overflow. Only do
   293  	// the relatively expensive map operations if ptrLevel is larger than
   294  	// startDetectingCyclesAfter, so that we skip the work if we're within a
   295  	// reasonable amount of nested pointers deep.
   296  	ptrLevel uint
   297  	ptrSeen  map[interface{}]struct{}
   298  }
   299  
   300  const startDetectingCyclesAfter = 1000
   301  
   302  var encodeStatePool sync.Pool
   303  
   304  func newEncodeState() *encodeState {
   305  	if v := encodeStatePool.Get(); v != nil {
   306  		e := v.(*encodeState)
   307  		e.Reset()
   308  		if len(e.ptrSeen) > 0 {
   309  			panic("ptrEncoder.encode should have emptied ptrSeen via defers")
   310  		}
   311  		e.ptrLevel = 0
   312  		return e
   313  	}
   314  	return &encodeState{ptrSeen: make(map[interface{}]struct{})}
   315  }
   316  
   317  // jsonError is an error wrapper type for internal use only.
   318  // Panics with errors are wrapped in jsonError so that the top-level recover
   319  // can distinguish intentional panics from this package.
   320  type jsonError struct{ error }
   321  
   322  func (e *encodeState) marshal(v interface{}, opts encOpts) (err error) {
   323  	defer func() {
   324  		if r := recover(); r != nil {
   325  			if je, ok := r.(jsonError); ok {
   326  				err = je.error
   327  			} else {
   328  				panic(r)
   329  			}
   330  		}
   331  	}()
   332  	e.reflectValue(reflect.ValueOf(v), opts)
   333  	return nil
   334  }
   335  
   336  // error aborts the encoding by panicking with err wrapped in jsonError.
   337  func (e *encodeState) error(err error) {
   338  	panic(jsonError{err})
   339  }
   340  
   341  func isEmptyValue(v reflect.Value) bool {
   342  	switch v.Kind() {
   343  	case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
   344  		return v.Len() == 0
   345  	case reflect.Bool:
   346  		return !v.Bool()
   347  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   348  		return v.Int() == 0
   349  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   350  		return v.Uint() == 0
   351  	case reflect.Float32, reflect.Float64:
   352  		return v.Float() == 0
   353  	case reflect.Interface, reflect.Ptr:
   354  		return v.IsNil()
   355  	}
   356  	return false
   357  }
   358  
   359  func (e *encodeState) reflectValue(v reflect.Value, opts encOpts) {
   360  	valueEncoder(v)(e, v, opts)
   361  }
   362  
   363  type encOpts struct {
   364  	// quoted causes primitive fields to be encoded inside JSON strings.
   365  	quoted bool
   366  	// escapeHTML causes '<', '>', and '&' to be escaped in JSON strings.
   367  	escapeHTML bool
   368  }
   369  
   370  type encoderFunc func(e *encodeState, v reflect.Value, opts encOpts)
   371  
   372  var encoderCache sync.Map // map[reflect.Type]encoderFunc
   373  
   374  func valueEncoder(v reflect.Value) encoderFunc {
   375  	if !v.IsValid() {
   376  		return invalidValueEncoder
   377  	}
   378  	return typeEncoder(v.Type())
   379  }
   380  
   381  func typeEncoder(t reflect.Type) encoderFunc {
   382  	if fi, ok := encoderCache.Load(t); ok {
   383  		return fi.(encoderFunc)
   384  	}
   385  
   386  	// To deal with recursive types, populate the map with an
   387  	// indirect func before we build it. This type waits on the
   388  	// real func (f) to be ready and then calls it. This indirect
   389  	// func is only used for recursive types.
   390  	var (
   391  		wg sync.WaitGroup
   392  		f  encoderFunc
   393  	)
   394  	wg.Add(1)
   395  	fi, loaded := encoderCache.LoadOrStore(t, encoderFunc(func(e *encodeState, v reflect.Value, opts encOpts) {
   396  		wg.Wait()
   397  		f(e, v, opts)
   398  	}))
   399  	if loaded {
   400  		return fi.(encoderFunc)
   401  	}
   402  
   403  	// Compute the real encoder and replace the indirect func with it.
   404  	f = newTypeEncoder(t, true)
   405  	wg.Done()
   406  	encoderCache.Store(t, f)
   407  	return f
   408  }
   409  
   410  var (
   411  	marshalerType     = reflect.TypeOf((*Marshaler)(nil)).Elem()
   412  	textMarshalerType = reflect.TypeOf((*encoding.TextMarshaler)(nil)).Elem()
   413  )
   414  
   415  // newTypeEncoder constructs an encoderFunc for a type.
   416  // The returned encoder only checks CanAddr when allowAddr is true.
   417  func newTypeEncoder(t reflect.Type, allowAddr bool) encoderFunc {
   418  	// If we have a non-pointer value whose type implements
   419  	// Marshaler with a value receiver, then we're better off taking
   420  	// the address of the value - otherwise we end up with an
   421  	// allocation as we cast the value to an interface.
   422  	if t.Kind() != reflect.Ptr && allowAddr && reflect.PtrTo(t).Implements(marshalerType) {
   423  		return newCondAddrEncoder(addrMarshalerEncoder, newTypeEncoder(t, false))
   424  	}
   425  	if t.Implements(marshalerType) {
   426  		return marshalerEncoder
   427  	}
   428  	if t.Kind() != reflect.Ptr && allowAddr && reflect.PtrTo(t).Implements(textMarshalerType) {
   429  		return newCondAddrEncoder(addrTextMarshalerEncoder, newTypeEncoder(t, false))
   430  	}
   431  	if t.Implements(textMarshalerType) {
   432  		return textMarshalerEncoder
   433  	}
   434  
   435  	switch t.Kind() {
   436  	case reflect.Bool:
   437  		return boolEncoder
   438  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   439  		return intEncoder
   440  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   441  		return uintEncoder
   442  	case reflect.Float32:
   443  		return float32Encoder
   444  	case reflect.Float64:
   445  		return float64Encoder
   446  	case reflect.String:
   447  		return stringEncoder
   448  	case reflect.Interface:
   449  		return interfaceEncoder
   450  	case reflect.Struct:
   451  		return newStructEncoder(t)
   452  	case reflect.Map:
   453  		return newMapEncoder(t)
   454  	case reflect.Slice:
   455  		return newSliceEncoder(t)
   456  	case reflect.Array:
   457  		return newArrayEncoder(t)
   458  	case reflect.Ptr:
   459  		return newPtrEncoder(t)
   460  	default:
   461  		return unsupportedTypeEncoder
   462  	}
   463  }
   464  
   465  func invalidValueEncoder(e *encodeState, v reflect.Value, _ encOpts) {
   466  	e.WriteString("null")
   467  }
   468  
   469  func marshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   470  	if v.Kind() == reflect.Ptr && v.IsNil() {
   471  		e.WriteString("null")
   472  		return
   473  	}
   474  	m, ok := v.Interface().(Marshaler)
   475  	if !ok {
   476  		e.WriteString("null")
   477  		return
   478  	}
   479  	b, err := m.MarshalJSON()
   480  	if err == nil {
   481  		// copy JSON into buffer, checking validity.
   482  		err = compact(&e.Buffer, b, opts.escapeHTML)
   483  	}
   484  	if err != nil {
   485  		e.error(&MarshalerError{v.Type(), err, "MarshalJSON"})
   486  	}
   487  }
   488  
   489  func addrMarshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   490  	va := v.Addr()
   491  	if va.IsNil() {
   492  		e.WriteString("null")
   493  		return
   494  	}
   495  	m := va.Interface().(Marshaler)
   496  	b, err := m.MarshalJSON()
   497  	if err == nil {
   498  		// copy JSON into buffer, checking validity.
   499  		err = compact(&e.Buffer, b, opts.escapeHTML)
   500  	}
   501  	if err != nil {
   502  		e.error(&MarshalerError{v.Type(), err, "MarshalJSON"})
   503  	}
   504  }
   505  
   506  func textMarshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   507  	if v.Kind() == reflect.Ptr && v.IsNil() {
   508  		e.WriteString("null")
   509  		return
   510  	}
   511  	m, ok := v.Interface().(encoding.TextMarshaler)
   512  	if !ok {
   513  		e.WriteString("null")
   514  		return
   515  	}
   516  	b, err := m.MarshalText()
   517  	if err != nil {
   518  		e.error(&MarshalerError{v.Type(), err, "MarshalText"})
   519  	}
   520  	e.stringBytes(b, opts.escapeHTML)
   521  }
   522  
   523  func addrTextMarshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   524  	va := v.Addr()
   525  	if va.IsNil() {
   526  		e.WriteString("null")
   527  		return
   528  	}
   529  	m := va.Interface().(encoding.TextMarshaler)
   530  	b, err := m.MarshalText()
   531  	if err != nil {
   532  		e.error(&MarshalerError{v.Type(), err, "MarshalText"})
   533  	}
   534  	e.stringBytes(b, opts.escapeHTML)
   535  }
   536  
   537  func boolEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   538  	if opts.quoted {
   539  		e.WriteByte('"')
   540  	}
   541  	if v.Bool() {
   542  		e.WriteString("true")
   543  	} else {
   544  		e.WriteString("false")
   545  	}
   546  	if opts.quoted {
   547  		e.WriteByte('"')
   548  	}
   549  }
   550  
   551  func intEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   552  	b := strconv.AppendInt(e.scratch[:0], v.Int(), 10)
   553  	if opts.quoted {
   554  		e.WriteByte('"')
   555  	}
   556  	e.Write(b)
   557  	if opts.quoted {
   558  		e.WriteByte('"')
   559  	}
   560  }
   561  
   562  func uintEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   563  	b := strconv.AppendUint(e.scratch[:0], v.Uint(), 10)
   564  	if opts.quoted {
   565  		e.WriteByte('"')
   566  	}
   567  	e.Write(b)
   568  	if opts.quoted {
   569  		e.WriteByte('"')
   570  	}
   571  }
   572  
   573  type floatEncoder int // number of bits
   574  
   575  func (bits floatEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   576  	f := v.Float()
   577  	if math.IsInf(f, 0) || math.IsNaN(f) {
   578  		e.error(&UnsupportedValueError{v, strconv.FormatFloat(f, 'g', -1, int(bits))})
   579  	}
   580  
   581  	// Convert as if by ES6 number to string conversion.
   582  	// This matches most other JSON generators.
   583  	// See golang.org/issue/6384 and golang.org/issue/14135.
   584  	// Like fmt %g, but the exponent cutoffs are different
   585  	// and exponents themselves are not padded to two digits.
   586  	b := e.scratch[:0]
   587  	abs := math.Abs(f)
   588  	fmt := byte('f')
   589  	// Note: Must use float32 comparisons for underlying float32 value to get precise cutoffs right.
   590  	if abs != 0 {
   591  		if bits == 64 && (abs < 1e-6 || abs >= 1e21) || bits == 32 && (float32(abs) < 1e-6 || float32(abs) >= 1e21) {
   592  			fmt = 'e'
   593  		}
   594  	}
   595  	b = strconv.AppendFloat(b, f, fmt, -1, int(bits))
   596  	if fmt == 'e' {
   597  		// clean up e-09 to e-9
   598  		n := len(b)
   599  		if n >= 4 && b[n-4] == 'e' && b[n-3] == '-' && b[n-2] == '0' {
   600  			b[n-2] = b[n-1]
   601  			b = b[:n-1]
   602  		}
   603  	}
   604  
   605  	if opts.quoted {
   606  		e.WriteByte('"')
   607  	}
   608  	e.Write(b)
   609  	if opts.quoted {
   610  		e.WriteByte('"')
   611  	}
   612  }
   613  
   614  var (
   615  	float32Encoder = (floatEncoder(32)).encode
   616  	float64Encoder = (floatEncoder(64)).encode
   617  )
   618  
   619  func stringEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   620  	if v.Type() == numberType {
   621  		numStr := v.String()
   622  		// In Go1.5 the empty string encodes to "0", while this is not a valid number literal
   623  		// we keep compatibility so check validity after this.
   624  		if numStr == "" {
   625  			numStr = "0" // Number's zero-val
   626  		}
   627  		if !isValidNumber(numStr) {
   628  			e.error(fmt.Errorf("json: invalid number literal %q", numStr))
   629  		}
   630  		if opts.quoted {
   631  			e.WriteByte('"')
   632  		}
   633  		e.WriteString(numStr)
   634  		if opts.quoted {
   635  			e.WriteByte('"')
   636  		}
   637  		return
   638  	}
   639  	if opts.quoted {
   640  		e2 := newEncodeState()
   641  		// Since we encode the string twice, we only need to escape HTML
   642  		// the first time.
   643  		e2.string(v.String(), opts.escapeHTML)
   644  		e.stringBytes(e2.Bytes(), false)
   645  		encodeStatePool.Put(e2)
   646  	} else {
   647  		e.string(v.String(), opts.escapeHTML)
   648  	}
   649  }
   650  
   651  // isValidNumber reports whether s is a valid JSON number literal.
   652  func isValidNumber(s string) bool {
   653  	// This function implements the JSON numbers grammar.
   654  	// See https://tools.ietf.org/html/rfc7159#section-6
   655  	// and https://www.json.org/img/number.png
   656  
   657  	if s == "" {
   658  		return false
   659  	}
   660  
   661  	// Optional -
   662  	if s[0] == '-' {
   663  		s = s[1:]
   664  		if s == "" {
   665  			return false
   666  		}
   667  	}
   668  
   669  	// Digits
   670  	switch {
   671  	default:
   672  		return false
   673  
   674  	case s[0] == '0':
   675  		s = s[1:]
   676  
   677  	case '1' <= s[0] && s[0] <= '9':
   678  		s = s[1:]
   679  		for len(s) > 0 && '0' <= s[0] && s[0] <= '9' {
   680  			s = s[1:]
   681  		}
   682  	}
   683  
   684  	// . followed by 1 or more digits.
   685  	if len(s) >= 2 && s[0] == '.' && '0' <= s[1] && s[1] <= '9' {
   686  		s = s[2:]
   687  		for len(s) > 0 && '0' <= s[0] && s[0] <= '9' {
   688  			s = s[1:]
   689  		}
   690  	}
   691  
   692  	// e or E followed by an optional - or + and
   693  	// 1 or more digits.
   694  	if len(s) >= 2 && (s[0] == 'e' || s[0] == 'E') {
   695  		s = s[1:]
   696  		if s[0] == '+' || s[0] == '-' {
   697  			s = s[1:]
   698  			if s == "" {
   699  				return false
   700  			}
   701  		}
   702  		for len(s) > 0 && '0' <= s[0] && s[0] <= '9' {
   703  			s = s[1:]
   704  		}
   705  	}
   706  
   707  	// Make sure we are at the end.
   708  	return s == ""
   709  }
   710  
   711  func interfaceEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   712  	if v.IsNil() {
   713  		e.WriteString("null")
   714  		return
   715  	}
   716  	e.reflectValue(v.Elem(), opts)
   717  }
   718  
   719  func unsupportedTypeEncoder(e *encodeState, v reflect.Value, _ encOpts) {
   720  	e.error(&UnsupportedTypeError{v.Type()})
   721  }
   722  
   723  type structEncoder struct {
   724  	fields structFields
   725  }
   726  
   727  type structFields struct {
   728  	list      []field
   729  	nameIndex map[string]int
   730  }
   731  
   732  func (se structEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   733  	next := byte('{')
   734  FieldLoop:
   735  	for i := range se.fields.list {
   736  		f := &se.fields.list[i]
   737  
   738  		// Find the nested struct field by following f.index.
   739  		fv := v
   740  		for _, i := range f.index {
   741  			if fv.Kind() == reflect.Ptr {
   742  				if fv.IsNil() {
   743  					continue FieldLoop
   744  				}
   745  				fv = fv.Elem()
   746  			}
   747  			fv = fv.Field(i)
   748  		}
   749  
   750  		if f.omitEmpty && isEmptyValue(fv) {
   751  			continue
   752  		}
   753  		e.WriteByte(next)
   754  		next = ','
   755  		if opts.escapeHTML {
   756  			e.WriteString(f.nameEscHTML)
   757  		} else {
   758  			e.WriteString(f.nameNonEsc)
   759  		}
   760  		opts.quoted = f.quoted
   761  		f.encoder(e, fv, opts)
   762  	}
   763  	if next == '{' {
   764  		e.WriteString("{}")
   765  	} else {
   766  		e.WriteByte('}')
   767  	}
   768  }
   769  
   770  func newStructEncoder(t reflect.Type) encoderFunc {
   771  	se := structEncoder{fields: cachedTypeFields(t)}
   772  	return se.encode
   773  }
   774  
   775  type mapEncoder struct {
   776  	elemEnc encoderFunc
   777  }
   778  
   779  func (me mapEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   780  	if v.IsNil() {
   781  		e.WriteString("null")
   782  		return
   783  	}
   784  	if e.ptrLevel++; e.ptrLevel > startDetectingCyclesAfter {
   785  		// We're a large number of nested ptrEncoder.encode calls deep;
   786  		// start checking if we've run into a pointer cycle.
   787  		ptr := v.Pointer()
   788  		if _, ok := e.ptrSeen[ptr]; ok {
   789  			e.error(&UnsupportedValueError{v, fmt.Sprintf("encountered a cycle via %s", v.Type())})
   790  		}
   791  		e.ptrSeen[ptr] = struct{}{}
   792  		defer delete(e.ptrSeen, ptr)
   793  	}
   794  	e.WriteByte('{')
   795  
   796  	// Extract and sort the keys.
   797  	sv := make([]reflectWithString, v.Len())
   798  	mi := v.MapRange()
   799  	for i := 0; mi.Next(); i++ {
   800  		sv[i].k = mi.Key()
   801  		sv[i].v = mi.Value()
   802  		if err := sv[i].resolve(); err != nil {
   803  			e.error(fmt.Errorf("json: encoding error for type %q: %q", v.Type().String(), err.Error()))
   804  		}
   805  	}
   806  	sort.Slice(sv, func(i, j int) bool { return sv[i].ks < sv[j].ks })
   807  
   808  	for i, kv := range sv {
   809  		if i > 0 {
   810  			e.WriteByte(',')
   811  		}
   812  		e.string(kv.ks, opts.escapeHTML)
   813  		e.WriteByte(':')
   814  		me.elemEnc(e, kv.v, opts)
   815  	}
   816  	e.WriteByte('}')
   817  	e.ptrLevel--
   818  }
   819  
   820  func newMapEncoder(t reflect.Type) encoderFunc {
   821  	switch t.Key().Kind() {
   822  	case reflect.String,
   823  		reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
   824  		reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   825  	default:
   826  		if !t.Key().Implements(textMarshalerType) {
   827  			return unsupportedTypeEncoder
   828  		}
   829  	}
   830  	me := mapEncoder{typeEncoder(t.Elem())}
   831  	return me.encode
   832  }
   833  
   834  func encodeByteSlice(e *encodeState, v reflect.Value, _ encOpts) {
   835  	if v.IsNil() {
   836  		e.WriteString("null")
   837  		return
   838  	}
   839  	s := v.Bytes()
   840  	e.WriteByte('"')
   841  	encodedLen := base64.StdEncoding.EncodedLen(len(s))
   842  	if encodedLen <= len(e.scratch) {
   843  		// If the encoded bytes fit in e.scratch, avoid an extra
   844  		// allocation and use the cheaper Encoding.Encode.
   845  		dst := e.scratch[:encodedLen]
   846  		base64.StdEncoding.Encode(dst, s)
   847  		e.Write(dst)
   848  	} else if encodedLen <= 1024 {
   849  		// The encoded bytes are short enough to allocate for, and
   850  		// Encoding.Encode is still cheaper.
   851  		dst := make([]byte, encodedLen)
   852  		base64.StdEncoding.Encode(dst, s)
   853  		e.Write(dst)
   854  	} else {
   855  		// The encoded bytes are too long to cheaply allocate, and
   856  		// Encoding.Encode is no longer noticeably cheaper.
   857  		enc := base64.NewEncoder(base64.StdEncoding, e)
   858  		enc.Write(s)
   859  		enc.Close()
   860  	}
   861  	e.WriteByte('"')
   862  }
   863  
   864  // sliceEncoder just wraps an arrayEncoder, checking to make sure the value isn't nil.
   865  type sliceEncoder struct {
   866  	arrayEnc encoderFunc
   867  }
   868  
   869  func (se sliceEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   870  	if v.IsNil() {
   871  		e.WriteString("null")
   872  		return
   873  	}
   874  	if e.ptrLevel++; e.ptrLevel > startDetectingCyclesAfter {
   875  		// We're a large number of nested ptrEncoder.encode calls deep;
   876  		// start checking if we've run into a pointer cycle.
   877  		// Here we use a struct to memorize the pointer to the first element of the slice
   878  		// and its length.
   879  		ptr := struct {
   880  			ptr uintptr
   881  			len int
   882  		}{v.Pointer(), v.Len()}
   883  		if _, ok := e.ptrSeen[ptr]; ok {
   884  			e.error(&UnsupportedValueError{v, fmt.Sprintf("encountered a cycle via %s", v.Type())})
   885  		}
   886  		e.ptrSeen[ptr] = struct{}{}
   887  		defer delete(e.ptrSeen, ptr)
   888  	}
   889  	se.arrayEnc(e, v, opts)
   890  	e.ptrLevel--
   891  }
   892  
   893  func newSliceEncoder(t reflect.Type) encoderFunc {
   894  	// Byte slices get special treatment; arrays don't.
   895  	if t.Elem().Kind() == reflect.Uint8 {
   896  		p := reflect.PtrTo(t.Elem())
   897  		if !p.Implements(marshalerType) && !p.Implements(textMarshalerType) {
   898  			return encodeByteSlice
   899  		}
   900  	}
   901  	enc := sliceEncoder{newArrayEncoder(t)}
   902  	return enc.encode
   903  }
   904  
   905  type arrayEncoder struct {
   906  	elemEnc encoderFunc
   907  }
   908  
   909  func (ae arrayEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   910  	e.WriteByte('[')
   911  	n := v.Len()
   912  	for i := 0; i < n; i++ {
   913  		if i > 0 {
   914  			e.WriteByte(',')
   915  		}
   916  		ae.elemEnc(e, v.Index(i), opts)
   917  	}
   918  	e.WriteByte(']')
   919  }
   920  
   921  func newArrayEncoder(t reflect.Type) encoderFunc {
   922  	enc := arrayEncoder{typeEncoder(t.Elem())}
   923  	return enc.encode
   924  }
   925  
   926  type ptrEncoder struct {
   927  	elemEnc encoderFunc
   928  }
   929  
   930  func (pe ptrEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   931  	if v.IsNil() {
   932  		e.WriteString("null")
   933  		return
   934  	}
   935  	if e.ptrLevel++; e.ptrLevel > startDetectingCyclesAfter {
   936  		// We're a large number of nested ptrEncoder.encode calls deep;
   937  		// start checking if we've run into a pointer cycle.
   938  		ptr := v.Interface()
   939  		if _, ok := e.ptrSeen[ptr]; ok {
   940  			e.error(&UnsupportedValueError{v, fmt.Sprintf("encountered a cycle via %s", v.Type())})
   941  		}
   942  		e.ptrSeen[ptr] = struct{}{}
   943  		defer delete(e.ptrSeen, ptr)
   944  	}
   945  	pe.elemEnc(e, v.Elem(), opts)
   946  	e.ptrLevel--
   947  }
   948  
   949  func newPtrEncoder(t reflect.Type) encoderFunc {
   950  	enc := ptrEncoder{typeEncoder(t.Elem())}
   951  	return enc.encode
   952  }
   953  
   954  type condAddrEncoder struct {
   955  	canAddrEnc, elseEnc encoderFunc
   956  }
   957  
   958  func (ce condAddrEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   959  	if v.CanAddr() {
   960  		ce.canAddrEnc(e, v, opts)
   961  	} else {
   962  		ce.elseEnc(e, v, opts)
   963  	}
   964  }
   965  
   966  // newCondAddrEncoder returns an encoder that checks whether its value
   967  // CanAddr and delegates to canAddrEnc if so, else to elseEnc.
   968  func newCondAddrEncoder(canAddrEnc, elseEnc encoderFunc) encoderFunc {
   969  	enc := condAddrEncoder{canAddrEnc: canAddrEnc, elseEnc: elseEnc}
   970  	return enc.encode
   971  }
   972  
   973  func isValidTag(s string) bool {
   974  	if s == "" {
   975  		return false
   976  	}
   977  	for _, c := range s {
   978  		switch {
   979  		case strings.ContainsRune("!#$%&()*+-./:;<=>?@[]^_{|}~ ", c):
   980  			// Backslash and quote chars are reserved, but
   981  			// otherwise any punctuation chars are allowed
   982  			// in a tag name.
   983  		case !unicode.IsLetter(c) && !unicode.IsDigit(c):
   984  			return false
   985  		}
   986  	}
   987  	return true
   988  }
   989  
   990  func typeByIndex(t reflect.Type, index []int) reflect.Type {
   991  	for _, i := range index {
   992  		if t.Kind() == reflect.Ptr {
   993  			t = t.Elem()
   994  		}
   995  		t = t.Field(i).Type
   996  	}
   997  	return t
   998  }
   999  
  1000  type reflectWithString struct {
  1001  	k  reflect.Value
  1002  	v  reflect.Value
  1003  	ks string
  1004  }
  1005  
  1006  func (w *reflectWithString) resolve() error {
  1007  	if w.k.Kind() == reflect.String {
  1008  		w.ks = w.k.String()
  1009  		return nil
  1010  	}
  1011  	if tm, ok := w.k.Interface().(encoding.TextMarshaler); ok {
  1012  		if w.k.Kind() == reflect.Ptr && w.k.IsNil() {
  1013  			return nil
  1014  		}
  1015  		buf, err := tm.MarshalText()
  1016  		w.ks = string(buf)
  1017  		return err
  1018  	}
  1019  	switch w.k.Kind() {
  1020  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
  1021  		w.ks = strconv.FormatInt(w.k.Int(), 10)
  1022  		return nil
  1023  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
  1024  		w.ks = strconv.FormatUint(w.k.Uint(), 10)
  1025  		return nil
  1026  	}
  1027  	panic("unexpected map key type")
  1028  }
  1029  
  1030  // NOTE: keep in sync with stringBytes below.
  1031  func (e *encodeState) string(s string, escapeHTML bool) {
  1032  	e.WriteByte('"')
  1033  	start := 0
  1034  	for i := 0; i < len(s); {
  1035  		if b := s[i]; b < utf8.RuneSelf {
  1036  			if htmlSafeSet[b] || (!escapeHTML && safeSet[b]) {
  1037  				i++
  1038  				continue
  1039  			}
  1040  			if start < i {
  1041  				e.WriteString(s[start:i])
  1042  			}
  1043  			e.WriteByte('\\')
  1044  			switch b {
  1045  			case '\\', '"':
  1046  				e.WriteByte(b)
  1047  			case '\n':
  1048  				e.WriteByte('n')
  1049  			case '\r':
  1050  				e.WriteByte('r')
  1051  			case '\t':
  1052  				e.WriteByte('t')
  1053  			default:
  1054  				// This encodes bytes < 0x20 except for \t, \n and \r.
  1055  				// If escapeHTML is set, it also escapes <, >, and &
  1056  				// because they can lead to security holes when
  1057  				// user-controlled strings are rendered into JSON
  1058  				// and served to some browsers.
  1059  				e.WriteString(`u00`)
  1060  				e.WriteByte(hex[b>>4])
  1061  				e.WriteByte(hex[b&0xF])
  1062  			}
  1063  			i++
  1064  			start = i
  1065  			continue
  1066  		}
  1067  		c, size := utf8.DecodeRuneInString(s[i:])
  1068  		if c == utf8.RuneError && size == 1 {
  1069  			if start < i {
  1070  				e.WriteString(s[start:i])
  1071  			}
  1072  			e.WriteString(`\ufffd`)
  1073  			i += size
  1074  			start = i
  1075  			continue
  1076  		}
  1077  		// U+2028 is LINE SEPARATOR.
  1078  		// U+2029 is PARAGRAPH SEPARATOR.
  1079  		// They are both technically valid characters in JSON strings,
  1080  		// but don't work in JSONP, which has to be evaluated as JavaScript,
  1081  		// and can lead to security holes there. It is valid JSON to
  1082  		// escape them, so we do so unconditionally.
  1083  		// See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion.
  1084  		if c == '\u2028' || c == '\u2029' {
  1085  			if start < i {
  1086  				e.WriteString(s[start:i])
  1087  			}
  1088  			e.WriteString(`\u202`)
  1089  			e.WriteByte(hex[c&0xF])
  1090  			i += size
  1091  			start = i
  1092  			continue
  1093  		}
  1094  		i += size
  1095  	}
  1096  	if start < len(s) {
  1097  		e.WriteString(s[start:])
  1098  	}
  1099  	e.WriteByte('"')
  1100  }
  1101  
  1102  // NOTE: keep in sync with string above.
  1103  func (e *encodeState) stringBytes(s []byte, escapeHTML bool) {
  1104  	e.WriteByte('"')
  1105  	start := 0
  1106  	for i := 0; i < len(s); {
  1107  		if b := s[i]; b < utf8.RuneSelf {
  1108  			if htmlSafeSet[b] || (!escapeHTML && safeSet[b]) {
  1109  				i++
  1110  				continue
  1111  			}
  1112  			if start < i {
  1113  				e.Write(s[start:i])
  1114  			}
  1115  			e.WriteByte('\\')
  1116  			switch b {
  1117  			case '\\', '"':
  1118  				e.WriteByte(b)
  1119  			case '\n':
  1120  				e.WriteByte('n')
  1121  			case '\r':
  1122  				e.WriteByte('r')
  1123  			case '\t':
  1124  				e.WriteByte('t')
  1125  			default:
  1126  				// This encodes bytes < 0x20 except for \t, \n and \r.
  1127  				// If escapeHTML is set, it also escapes <, >, and &
  1128  				// because they can lead to security holes when
  1129  				// user-controlled strings are rendered into JSON
  1130  				// and served to some browsers.
  1131  				e.WriteString(`u00`)
  1132  				e.WriteByte(hex[b>>4])
  1133  				e.WriteByte(hex[b&0xF])
  1134  			}
  1135  			i++
  1136  			start = i
  1137  			continue
  1138  		}
  1139  		c, size := utf8.DecodeRune(s[i:])
  1140  		if c == utf8.RuneError && size == 1 {
  1141  			if start < i {
  1142  				e.Write(s[start:i])
  1143  			}
  1144  			e.WriteString(`\ufffd`)
  1145  			i += size
  1146  			start = i
  1147  			continue
  1148  		}
  1149  		// U+2028 is LINE SEPARATOR.
  1150  		// U+2029 is PARAGRAPH SEPARATOR.
  1151  		// They are both technically valid characters in JSON strings,
  1152  		// but don't work in JSONP, which has to be evaluated as JavaScript,
  1153  		// and can lead to security holes there. It is valid JSON to
  1154  		// escape them, so we do so unconditionally.
  1155  		// See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion.
  1156  		if c == '\u2028' || c == '\u2029' {
  1157  			if start < i {
  1158  				e.Write(s[start:i])
  1159  			}
  1160  			e.WriteString(`\u202`)
  1161  			e.WriteByte(hex[c&0xF])
  1162  			i += size
  1163  			start = i
  1164  			continue
  1165  		}
  1166  		i += size
  1167  	}
  1168  	if start < len(s) {
  1169  		e.Write(s[start:])
  1170  	}
  1171  	e.WriteByte('"')
  1172  }
  1173  
  1174  // A field represents a single field found in a struct.
  1175  type field struct {
  1176  	name      string
  1177  	nameBytes []byte                 // []byte(name)
  1178  	equalFold func(s, t []byte) bool // bytes.EqualFold or equivalent
  1179  
  1180  	nameNonEsc  string // `"` + name + `":`
  1181  	nameEscHTML string // `"` + HTMLEscape(name) + `":`
  1182  
  1183  	tag       bool
  1184  	index     []int
  1185  	typ       reflect.Type
  1186  	omitEmpty bool
  1187  	quoted    bool
  1188  
  1189  	encoder encoderFunc
  1190  }
  1191  
  1192  // byIndex sorts field by index sequence.
  1193  type byIndex []field
  1194  
  1195  func (x byIndex) Len() int { return len(x) }
  1196  
  1197  func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
  1198  
  1199  func (x byIndex) Less(i, j int) bool {
  1200  	for k, xik := range x[i].index {
  1201  		if k >= len(x[j].index) {
  1202  			return false
  1203  		}
  1204  		if xik != x[j].index[k] {
  1205  			return xik < x[j].index[k]
  1206  		}
  1207  	}
  1208  	return len(x[i].index) < len(x[j].index)
  1209  }
  1210  
  1211  // typeFields returns a list of fields that JSON should recognize for the given type.
  1212  // The algorithm is breadth-first search over the set of structs to include - the top struct
  1213  // and then any reachable anonymous structs.
  1214  func typeFields(t reflect.Type) structFields {
  1215  	// Anonymous fields to explore at the current level and the next.
  1216  	current := []field{}
  1217  	next := []field{{typ: t}}
  1218  
  1219  	// Count of queued names for current level and the next.
  1220  	var count, nextCount map[reflect.Type]int
  1221  
  1222  	// Types already visited at an earlier level.
  1223  	visited := map[reflect.Type]bool{}
  1224  
  1225  	// Fields found.
  1226  	var fields []field
  1227  
  1228  	// Buffer to run HTMLEscape on field names.
  1229  	var nameEscBuf bytes.Buffer
  1230  
  1231  	for len(next) > 0 {
  1232  		current, next = next, current[:0]
  1233  		count, nextCount = nextCount, map[reflect.Type]int{}
  1234  
  1235  		for _, f := range current {
  1236  			if visited[f.typ] {
  1237  				continue
  1238  			}
  1239  			visited[f.typ] = true
  1240  
  1241  			// Scan f.typ for fields to include.
  1242  			for i := 0; i < f.typ.NumField(); i++ {
  1243  				sf := f.typ.Field(i)
  1244  				if sf.Anonymous {
  1245  					t := sf.Type
  1246  					if t.Kind() == reflect.Ptr {
  1247  						t = t.Elem()
  1248  					}
  1249  					if !sf.IsExported() && t.Kind() != reflect.Struct {
  1250  						// Ignore embedded fields of unexported non-struct types.
  1251  						continue
  1252  					}
  1253  					// Do not ignore embedded fields of unexported struct types
  1254  					// since they may have exported fields.
  1255  				} else if !sf.IsExported() {
  1256  					// Ignore unexported non-embedded fields.
  1257  					continue
  1258  				}
  1259  				tag := sf.Tag.Get("json")
  1260  				if tag == "-" {
  1261  					continue
  1262  				}
  1263  				name, opts := parseTag(tag)
  1264  				if !isValidTag(name) {
  1265  					name = ""
  1266  				}
  1267  				index := make([]int, len(f.index)+1)
  1268  				copy(index, f.index)
  1269  				index[len(f.index)] = i
  1270  
  1271  				ft := sf.Type
  1272  				if ft.Name() == "" && ft.Kind() == reflect.Ptr {
  1273  					// Follow pointer.
  1274  					ft = ft.Elem()
  1275  				}
  1276  
  1277  				// Only strings, floats, integers, and booleans can be quoted.
  1278  				quoted := false
  1279  				if opts.Contains("string") {
  1280  					switch ft.Kind() {
  1281  					case reflect.Bool,
  1282  						reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
  1283  						reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr,
  1284  						reflect.Float32, reflect.Float64,
  1285  						reflect.String:
  1286  						quoted = true
  1287  					}
  1288  				}
  1289  
  1290  				// Record found field and index sequence.
  1291  				if name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct {
  1292  					tagged := name != ""
  1293  					if name == "" {
  1294  						name = sf.Name
  1295  					}
  1296  					field := field{
  1297  						name:      name,
  1298  						tag:       tagged,
  1299  						index:     index,
  1300  						typ:       ft,
  1301  						omitEmpty: opts.Contains("omitempty"),
  1302  						quoted:    quoted,
  1303  					}
  1304  					field.nameBytes = []byte(field.name)
  1305  					field.equalFold = foldFunc(field.nameBytes)
  1306  
  1307  					// Build nameEscHTML and nameNonEsc ahead of time.
  1308  					nameEscBuf.Reset()
  1309  					nameEscBuf.WriteString(`"`)
  1310  					HTMLEscape(&nameEscBuf, field.nameBytes)
  1311  					nameEscBuf.WriteString(`":`)
  1312  					field.nameEscHTML = nameEscBuf.String()
  1313  					field.nameNonEsc = `"` + field.name + `":`
  1314  
  1315  					fields = append(fields, field)
  1316  					if count[f.typ] > 1 {
  1317  						// If there were multiple instances, add a second,
  1318  						// so that the annihilation code will see a duplicate.
  1319  						// It only cares about the distinction between 1 or 2,
  1320  						// so don't bother generating any more copies.
  1321  						fields = append(fields, fields[len(fields)-1])
  1322  					}
  1323  					continue
  1324  				}
  1325  
  1326  				// Record new anonymous struct to explore in next round.
  1327  				nextCount[ft]++
  1328  				if nextCount[ft] == 1 {
  1329  					next = append(next, field{name: ft.Name(), index: index, typ: ft})
  1330  				}
  1331  			}
  1332  		}
  1333  	}
  1334  
  1335  	sort.Slice(fields, func(i, j int) bool {
  1336  		x := fields
  1337  		// sort field by name, breaking ties with depth, then
  1338  		// breaking ties with "name came from json tag", then
  1339  		// breaking ties with index sequence.
  1340  		if x[i].name != x[j].name {
  1341  			return x[i].name < x[j].name
  1342  		}
  1343  		if len(x[i].index) != len(x[j].index) {
  1344  			return len(x[i].index) < len(x[j].index)
  1345  		}
  1346  		if x[i].tag != x[j].tag {
  1347  			return x[i].tag
  1348  		}
  1349  		return byIndex(x).Less(i, j)
  1350  	})
  1351  
  1352  	// Delete all fields that are hidden by the Go rules for embedded fields,
  1353  	// except that fields with JSON tags are promoted.
  1354  
  1355  	// The fields are sorted in primary order of name, secondary order
  1356  	// of field index length. Loop over names; for each name, delete
  1357  	// hidden fields by choosing the one dominant field that survives.
  1358  	out := fields[:0]
  1359  	for advance, i := 0, 0; i < len(fields); i += advance {
  1360  		// One iteration per name.
  1361  		// Find the sequence of fields with the name of this first field.
  1362  		fi := fields[i]
  1363  		name := fi.name
  1364  		for advance = 1; i+advance < len(fields); advance++ {
  1365  			fj := fields[i+advance]
  1366  			if fj.name != name {
  1367  				break
  1368  			}
  1369  		}
  1370  		if advance == 1 { // Only one field with this name
  1371  			out = append(out, fi)
  1372  			continue
  1373  		}
  1374  		dominant, ok := dominantField(fields[i : i+advance])
  1375  		if ok {
  1376  			out = append(out, dominant)
  1377  		}
  1378  	}
  1379  
  1380  	fields = out
  1381  	sort.Sort(byIndex(fields))
  1382  
  1383  	for i := range fields {
  1384  		f := &fields[i]
  1385  		f.encoder = typeEncoder(typeByIndex(t, f.index))
  1386  	}
  1387  	nameIndex := make(map[string]int, len(fields))
  1388  	for i, field := range fields {
  1389  		nameIndex[field.name] = i
  1390  	}
  1391  	return structFields{fields, nameIndex}
  1392  }
  1393  
  1394  // dominantField looks through the fields, all of which are known to
  1395  // have the same name, to find the single field that dominates the
  1396  // others using Go's embedding rules, modified by the presence of
  1397  // JSON tags. If there are multiple top-level fields, the boolean
  1398  // will be false: This condition is an error in Go and we skip all
  1399  // the fields.
  1400  func dominantField(fields []field) (field, bool) {
  1401  	// The fields are sorted in increasing index-length order, then by presence of tag.
  1402  	// That means that the first field is the dominant one. We need only check
  1403  	// for error cases: two fields at top level, either both tagged or neither tagged.
  1404  	if len(fields) > 1 && len(fields[0].index) == len(fields[1].index) && fields[0].tag == fields[1].tag {
  1405  		return field{}, false
  1406  	}
  1407  	return fields[0], true
  1408  }
  1409  
  1410  var fieldCache sync.Map // map[reflect.Type]structFields
  1411  
  1412  // cachedTypeFields is like typeFields but uses a cache to avoid repeated work.
  1413  func cachedTypeFields(t reflect.Type) structFields {
  1414  	if f, ok := fieldCache.Load(t); ok {
  1415  		return f.(structFields)
  1416  	}
  1417  	f, _ := fieldCache.LoadOrStore(t, typeFields(t))
  1418  	return f.(structFields)
  1419  }
  1420  

View as plain text