Source file src/math/pow.go

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package math
     6  
     7  func isOddInt(x float64) bool {
     8  	xi, xf := Modf(x)
     9  	return xf == 0 && int64(xi)&1 == 1
    10  }
    11  
    12  // Special cases taken from FreeBSD's /usr/src/lib/msun/src/e_pow.c
    13  // updated by IEEE Std. 754-2008 "Section 9.2.1 Special values".
    14  
    15  // Pow returns x**y, the base-x exponential of y.
    16  //
    17  // Special cases are (in order):
    18  //	Pow(x, ±0) = 1 for any x
    19  //	Pow(1, y) = 1 for any y
    20  //	Pow(x, 1) = x for any x
    21  //	Pow(NaN, y) = NaN
    22  //	Pow(x, NaN) = NaN
    23  //	Pow(±0, y) = ±Inf for y an odd integer < 0
    24  //	Pow(±0, -Inf) = +Inf
    25  //	Pow(±0, +Inf) = +0
    26  //	Pow(±0, y) = +Inf for finite y < 0 and not an odd integer
    27  //	Pow(±0, y) = ±0 for y an odd integer > 0
    28  //	Pow(±0, y) = +0 for finite y > 0 and not an odd integer
    29  //	Pow(-1, ±Inf) = 1
    30  //	Pow(x, +Inf) = +Inf for |x| > 1
    31  //	Pow(x, -Inf) = +0 for |x| > 1
    32  //	Pow(x, +Inf) = +0 for |x| < 1
    33  //	Pow(x, -Inf) = +Inf for |x| < 1
    34  //	Pow(+Inf, y) = +Inf for y > 0
    35  //	Pow(+Inf, y) = +0 for y < 0
    36  //	Pow(-Inf, y) = Pow(-0, -y)
    37  //	Pow(x, y) = NaN for finite x < 0 and finite non-integer y
    38  func Pow(x, y float64) float64 {
    39  	if haveArchPow {
    40  		return archPow(x, y)
    41  	}
    42  	return pow(x, y)
    43  }
    44  
    45  func pow(x, y float64) float64 {
    46  	switch {
    47  	case y == 0 || x == 1:
    48  		return 1
    49  	case y == 1:
    50  		return x
    51  	case IsNaN(x) || IsNaN(y):
    52  		return NaN()
    53  	case x == 0:
    54  		switch {
    55  		case y < 0:
    56  			if isOddInt(y) {
    57  				return Copysign(Inf(1), x)
    58  			}
    59  			return Inf(1)
    60  		case y > 0:
    61  			if isOddInt(y) {
    62  				return x
    63  			}
    64  			return 0
    65  		}
    66  	case IsInf(y, 0):
    67  		switch {
    68  		case x == -1:
    69  			return 1
    70  		case (Abs(x) < 1) == IsInf(y, 1):
    71  			return 0
    72  		default:
    73  			return Inf(1)
    74  		}
    75  	case IsInf(x, 0):
    76  		if IsInf(x, -1) {
    77  			return Pow(1/x, -y) // Pow(-0, -y)
    78  		}
    79  		switch {
    80  		case y < 0:
    81  			return 0
    82  		case y > 0:
    83  			return Inf(1)
    84  		}
    85  	case y == 0.5:
    86  		return Sqrt(x)
    87  	case y == -0.5:
    88  		return 1 / Sqrt(x)
    89  	}
    90  
    91  	yi, yf := Modf(Abs(y))
    92  	if yf != 0 && x < 0 {
    93  		return NaN()
    94  	}
    95  	if yi >= 1<<63 {
    96  		// yi is a large even int that will lead to overflow (or underflow to 0)
    97  		// for all x except -1 (x == 1 was handled earlier)
    98  		switch {
    99  		case x == -1:
   100  			return 1
   101  		case (Abs(x) < 1) == (y > 0):
   102  			return 0
   103  		default:
   104  			return Inf(1)
   105  		}
   106  	}
   107  
   108  	// ans = a1 * 2**ae (= 1 for now).
   109  	a1 := 1.0
   110  	ae := 0
   111  
   112  	// ans *= x**yf
   113  	if yf != 0 {
   114  		if yf > 0.5 {
   115  			yf--
   116  			yi++
   117  		}
   118  		a1 = Exp(yf * Log(x))
   119  	}
   120  
   121  	// ans *= x**yi
   122  	// by multiplying in successive squarings
   123  	// of x according to bits of yi.
   124  	// accumulate powers of two into exp.
   125  	x1, xe := Frexp(x)
   126  	for i := int64(yi); i != 0; i >>= 1 {
   127  		if xe < -1<<12 || 1<<12 < xe {
   128  			// catch xe before it overflows the left shift below
   129  			// Since i !=0 it has at least one bit still set, so ae will accumulate xe
   130  			// on at least one more iteration, ae += xe is a lower bound on ae
   131  			// the lower bound on ae exceeds the size of a float64 exp
   132  			// so the final call to Ldexp will produce under/overflow (0/Inf)
   133  			ae += xe
   134  			break
   135  		}
   136  		if i&1 == 1 {
   137  			a1 *= x1
   138  			ae += xe
   139  		}
   140  		x1 *= x1
   141  		xe <<= 1
   142  		if x1 < .5 {
   143  			x1 += x1
   144  			xe--
   145  		}
   146  	}
   147  
   148  	// ans = a1*2**ae
   149  	// if y < 0 { ans = 1 / ans }
   150  	// but in the opposite order
   151  	if y < 0 {
   152  		a1 = 1 / a1
   153  		ae = -ae
   154  	}
   155  	return Ldexp(a1, ae)
   156  }
   157  

View as plain text