Source file src/math/rand/rand.go

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package rand implements pseudo-random number generators unsuitable for
     6  // security-sensitive work.
     7  //
     8  // Random numbers are generated by a [Source], usually wrapped in a [Rand].
     9  // Both types should be used by a single goroutine at a time: sharing among
    10  // multiple goroutines requires some kind of synchronization.
    11  //
    12  // Top-level functions, such as [Float64] and [Int],
    13  // are safe for concurrent use by multiple goroutines.
    14  //
    15  // This package's outputs might be easily predictable regardless of how it's
    16  // seeded. For random numbers suitable for security-sensitive work, see the
    17  // crypto/rand package.
    18  package rand
    19  
    20  import (
    21  	"internal/godebug"
    22  	"sync"
    23  	_ "unsafe" // for go:linkname
    24  )
    25  
    26  // A Source represents a source of uniformly-distributed
    27  // pseudo-random int64 values in the range [0, 1<<63).
    28  //
    29  // A Source is not safe for concurrent use by multiple goroutines.
    30  type Source interface {
    31  	Int63() int64
    32  	Seed(seed int64)
    33  }
    34  
    35  // A Source64 is a Source that can also generate
    36  // uniformly-distributed pseudo-random uint64 values in
    37  // the range [0, 1<<64) directly.
    38  // If a Rand r's underlying Source s implements Source64,
    39  // then r.Uint64 returns the result of one call to s.Uint64
    40  // instead of making two calls to s.Int63.
    41  type Source64 interface {
    42  	Source
    43  	Uint64() uint64
    44  }
    45  
    46  // NewSource returns a new pseudo-random Source seeded with the given value.
    47  // Unlike the default Source used by top-level functions, this source is not
    48  // safe for concurrent use by multiple goroutines.
    49  // The returned Source implements Source64.
    50  func NewSource(seed int64) Source {
    51  	return newSource(seed)
    52  }
    53  
    54  func newSource(seed int64) *rngSource {
    55  	var rng rngSource
    56  	rng.Seed(seed)
    57  	return &rng
    58  }
    59  
    60  // A Rand is a source of random numbers.
    61  type Rand struct {
    62  	src Source
    63  	s64 Source64 // non-nil if src is source64
    64  
    65  	// readVal contains remainder of 63-bit integer used for bytes
    66  	// generation during most recent Read call.
    67  	// It is saved so next Read call can start where the previous
    68  	// one finished.
    69  	readVal int64
    70  	// readPos indicates the number of low-order bytes of readVal
    71  	// that are still valid.
    72  	readPos int8
    73  }
    74  
    75  // New returns a new Rand that uses random values from src
    76  // to generate other random values.
    77  func New(src Source) *Rand {
    78  	s64, _ := src.(Source64)
    79  	return &Rand{src: src, s64: s64}
    80  }
    81  
    82  // Seed uses the provided seed value to initialize the generator to a deterministic state.
    83  // Seed should not be called concurrently with any other Rand method.
    84  func (r *Rand) Seed(seed int64) {
    85  	if lk, ok := r.src.(*lockedSource); ok {
    86  		lk.seedPos(seed, &r.readPos)
    87  		return
    88  	}
    89  
    90  	r.src.Seed(seed)
    91  	r.readPos = 0
    92  }
    93  
    94  // Int63 returns a non-negative pseudo-random 63-bit integer as an int64.
    95  func (r *Rand) Int63() int64 { return r.src.Int63() }
    96  
    97  // Uint32 returns a pseudo-random 32-bit value as a uint32.
    98  func (r *Rand) Uint32() uint32 { return uint32(r.Int63() >> 31) }
    99  
   100  // Uint64 returns a pseudo-random 64-bit value as a uint64.
   101  func (r *Rand) Uint64() uint64 {
   102  	if r.s64 != nil {
   103  		return r.s64.Uint64()
   104  	}
   105  	return uint64(r.Int63())>>31 | uint64(r.Int63())<<32
   106  }
   107  
   108  // Int31 returns a non-negative pseudo-random 31-bit integer as an int32.
   109  func (r *Rand) Int31() int32 { return int32(r.Int63() >> 32) }
   110  
   111  // Int returns a non-negative pseudo-random int.
   112  func (r *Rand) Int() int {
   113  	u := uint(r.Int63())
   114  	return int(u << 1 >> 1) // clear sign bit if int == int32
   115  }
   116  
   117  // Int63n returns, as an int64, a non-negative pseudo-random number in the half-open interval [0,n).
   118  // It panics if n <= 0.
   119  func (r *Rand) Int63n(n int64) int64 {
   120  	if n <= 0 {
   121  		panic("invalid argument to Int63n")
   122  	}
   123  	if n&(n-1) == 0 { // n is power of two, can mask
   124  		return r.Int63() & (n - 1)
   125  	}
   126  	max := int64((1 << 63) - 1 - (1<<63)%uint64(n))
   127  	v := r.Int63()
   128  	for v > max {
   129  		v = r.Int63()
   130  	}
   131  	return v % n
   132  }
   133  
   134  // Int31n returns, as an int32, a non-negative pseudo-random number in the half-open interval [0,n).
   135  // It panics if n <= 0.
   136  func (r *Rand) Int31n(n int32) int32 {
   137  	if n <= 0 {
   138  		panic("invalid argument to Int31n")
   139  	}
   140  	if n&(n-1) == 0 { // n is power of two, can mask
   141  		return r.Int31() & (n - 1)
   142  	}
   143  	max := int32((1 << 31) - 1 - (1<<31)%uint32(n))
   144  	v := r.Int31()
   145  	for v > max {
   146  		v = r.Int31()
   147  	}
   148  	return v % n
   149  }
   150  
   151  // int31n returns, as an int32, a non-negative pseudo-random number in the half-open interval [0,n).
   152  // n must be > 0, but int31n does not check this; the caller must ensure it.
   153  // int31n exists because Int31n is inefficient, but Go 1 compatibility
   154  // requires that the stream of values produced by math/rand remain unchanged.
   155  // int31n can thus only be used internally, by newly introduced APIs.
   156  //
   157  // For implementation details, see:
   158  // https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction
   159  // https://lemire.me/blog/2016/06/30/fast-random-shuffling
   160  func (r *Rand) int31n(n int32) int32 {
   161  	v := r.Uint32()
   162  	prod := uint64(v) * uint64(n)
   163  	low := uint32(prod)
   164  	if low < uint32(n) {
   165  		thresh := uint32(-n) % uint32(n)
   166  		for low < thresh {
   167  			v = r.Uint32()
   168  			prod = uint64(v) * uint64(n)
   169  			low = uint32(prod)
   170  		}
   171  	}
   172  	return int32(prod >> 32)
   173  }
   174  
   175  // Intn returns, as an int, a non-negative pseudo-random number in the half-open interval [0,n).
   176  // It panics if n <= 0.
   177  func (r *Rand) Intn(n int) int {
   178  	if n <= 0 {
   179  		panic("invalid argument to Intn")
   180  	}
   181  	if n <= 1<<31-1 {
   182  		return int(r.Int31n(int32(n)))
   183  	}
   184  	return int(r.Int63n(int64(n)))
   185  }
   186  
   187  // Float64 returns, as a float64, a pseudo-random number in the half-open interval [0.0,1.0).
   188  func (r *Rand) Float64() float64 {
   189  	// A clearer, simpler implementation would be:
   190  	//	return float64(r.Int63n(1<<53)) / (1<<53)
   191  	// However, Go 1 shipped with
   192  	//	return float64(r.Int63()) / (1 << 63)
   193  	// and we want to preserve that value stream.
   194  	//
   195  	// There is one bug in the value stream: r.Int63() may be so close
   196  	// to 1<<63 that the division rounds up to 1.0, and we've guaranteed
   197  	// that the result is always less than 1.0.
   198  	//
   199  	// We tried to fix this by mapping 1.0 back to 0.0, but since float64
   200  	// values near 0 are much denser than near 1, mapping 1 to 0 caused
   201  	// a theoretically significant overshoot in the probability of returning 0.
   202  	// Instead of that, if we round up to 1, just try again.
   203  	// Getting 1 only happens 1/2⁵³ of the time, so most clients
   204  	// will not observe it anyway.
   205  again:
   206  	f := float64(r.Int63()) / (1 << 63)
   207  	if f == 1 {
   208  		goto again // resample; this branch is taken O(never)
   209  	}
   210  	return f
   211  }
   212  
   213  // Float32 returns, as a float32, a pseudo-random number in the half-open interval [0.0,1.0).
   214  func (r *Rand) Float32() float32 {
   215  	// Same rationale as in Float64: we want to preserve the Go 1 value
   216  	// stream except we want to fix it not to return 1.0
   217  	// This only happens 1/2²⁴ of the time (plus the 1/2⁵³ of the time in Float64).
   218  again:
   219  	f := float32(r.Float64())
   220  	if f == 1 {
   221  		goto again // resample; this branch is taken O(very rarely)
   222  	}
   223  	return f
   224  }
   225  
   226  // Perm returns, as a slice of n ints, a pseudo-random permutation of the integers
   227  // in the half-open interval [0,n).
   228  func (r *Rand) Perm(n int) []int {
   229  	m := make([]int, n)
   230  	// In the following loop, the iteration when i=0 always swaps m[0] with m[0].
   231  	// A change to remove this useless iteration is to assign 1 to i in the init
   232  	// statement. But Perm also effects r. Making this change will affect
   233  	// the final state of r. So this change can't be made for compatibility
   234  	// reasons for Go 1.
   235  	for i := 0; i < n; i++ {
   236  		j := r.Intn(i + 1)
   237  		m[i] = m[j]
   238  		m[j] = i
   239  	}
   240  	return m
   241  }
   242  
   243  // Shuffle pseudo-randomizes the order of elements.
   244  // n is the number of elements. Shuffle panics if n < 0.
   245  // swap swaps the elements with indexes i and j.
   246  func (r *Rand) Shuffle(n int, swap func(i, j int)) {
   247  	if n < 0 {
   248  		panic("invalid argument to Shuffle")
   249  	}
   250  
   251  	// Fisher-Yates shuffle: https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle
   252  	// Shuffle really ought not be called with n that doesn't fit in 32 bits.
   253  	// Not only will it take a very long time, but with 2³¹! possible permutations,
   254  	// there's no way that any PRNG can have a big enough internal state to
   255  	// generate even a minuscule percentage of the possible permutations.
   256  	// Nevertheless, the right API signature accepts an int n, so handle it as best we can.
   257  	i := n - 1
   258  	for ; i > 1<<31-1-1; i-- {
   259  		j := int(r.Int63n(int64(i + 1)))
   260  		swap(i, j)
   261  	}
   262  	for ; i > 0; i-- {
   263  		j := int(r.int31n(int32(i + 1)))
   264  		swap(i, j)
   265  	}
   266  }
   267  
   268  // Read generates len(p) random bytes and writes them into p. It
   269  // always returns len(p) and a nil error.
   270  // Read should not be called concurrently with any other Rand method.
   271  func (r *Rand) Read(p []byte) (n int, err error) {
   272  	if lk, ok := r.src.(*lockedSource); ok {
   273  		return lk.read(p, &r.readVal, &r.readPos)
   274  	}
   275  	return read(p, r.src, &r.readVal, &r.readPos)
   276  }
   277  
   278  func read(p []byte, src Source, readVal *int64, readPos *int8) (n int, err error) {
   279  	pos := *readPos
   280  	val := *readVal
   281  	rng, _ := src.(*rngSource)
   282  	for n = 0; n < len(p); n++ {
   283  		if pos == 0 {
   284  			if rng != nil {
   285  				val = rng.Int63()
   286  			} else {
   287  				val = src.Int63()
   288  			}
   289  			pos = 7
   290  		}
   291  		p[n] = byte(val)
   292  		val >>= 8
   293  		pos--
   294  	}
   295  	*readPos = pos
   296  	*readVal = val
   297  	return
   298  }
   299  
   300  /*
   301   * Top-level convenience functions
   302   */
   303  
   304  var globalRand = New(new(lockedSource))
   305  
   306  // Seed uses the provided seed value to initialize the default Source to a
   307  // deterministic state. Seed values that have the same remainder when
   308  // divided by 2³¹-1 generate the same pseudo-random sequence.
   309  // Seed, unlike the Rand.Seed method, is safe for concurrent use.
   310  //
   311  // If Seed is not called, the generator is seeded randomly at program startup.
   312  //
   313  // Prior to Go 1.20, the generator was seeded like Seed(1) at program startup.
   314  // To force the old behavior, call Seed(1) at program startup.
   315  // Alternately, set GODEBUG=randautoseed=0 in the environment
   316  // before making any calls to functions in this package.
   317  //
   318  // Deprecated: Programs that call Seed and then expect a specific sequence
   319  // of results from the global random source (using functions such as Int)
   320  // can be broken when a dependency changes how much it consumes
   321  // from the global random source. To avoid such breakages, programs
   322  // that need a specific result sequence should use NewRand(NewSource(seed))
   323  // to obtain a random generator that other packages cannot access.
   324  func Seed(seed int64) { globalRand.Seed(seed) }
   325  
   326  // Int63 returns a non-negative pseudo-random 63-bit integer as an int64
   327  // from the default Source.
   328  func Int63() int64 { return globalRand.Int63() }
   329  
   330  // Uint32 returns a pseudo-random 32-bit value as a uint32
   331  // from the default Source.
   332  func Uint32() uint32 { return globalRand.Uint32() }
   333  
   334  // Uint64 returns a pseudo-random 64-bit value as a uint64
   335  // from the default Source.
   336  func Uint64() uint64 { return globalRand.Uint64() }
   337  
   338  // Int31 returns a non-negative pseudo-random 31-bit integer as an int32
   339  // from the default Source.
   340  func Int31() int32 { return globalRand.Int31() }
   341  
   342  // Int returns a non-negative pseudo-random int from the default Source.
   343  func Int() int { return globalRand.Int() }
   344  
   345  // Int63n returns, as an int64, a non-negative pseudo-random number in the half-open interval [0,n)
   346  // from the default Source.
   347  // It panics if n <= 0.
   348  func Int63n(n int64) int64 { return globalRand.Int63n(n) }
   349  
   350  // Int31n returns, as an int32, a non-negative pseudo-random number in the half-open interval [0,n)
   351  // from the default Source.
   352  // It panics if n <= 0.
   353  func Int31n(n int32) int32 { return globalRand.Int31n(n) }
   354  
   355  // Intn returns, as an int, a non-negative pseudo-random number in the half-open interval [0,n)
   356  // from the default Source.
   357  // It panics if n <= 0.
   358  func Intn(n int) int { return globalRand.Intn(n) }
   359  
   360  // Float64 returns, as a float64, a pseudo-random number in the half-open interval [0.0,1.0)
   361  // from the default Source.
   362  func Float64() float64 { return globalRand.Float64() }
   363  
   364  // Float32 returns, as a float32, a pseudo-random number in the half-open interval [0.0,1.0)
   365  // from the default Source.
   366  func Float32() float32 { return globalRand.Float32() }
   367  
   368  // Perm returns, as a slice of n ints, a pseudo-random permutation of the integers
   369  // in the half-open interval [0,n) from the default Source.
   370  func Perm(n int) []int { return globalRand.Perm(n) }
   371  
   372  // Shuffle pseudo-randomizes the order of elements using the default Source.
   373  // n is the number of elements. Shuffle panics if n < 0.
   374  // swap swaps the elements with indexes i and j.
   375  func Shuffle(n int, swap func(i, j int)) { globalRand.Shuffle(n, swap) }
   376  
   377  // Read generates len(p) random bytes from the default Source and
   378  // writes them into p. It always returns len(p) and a nil error.
   379  // Read, unlike the Rand.Read method, is safe for concurrent use.
   380  //
   381  // Deprecated: For almost all use cases, crypto/rand.Read is more appropriate.
   382  func Read(p []byte) (n int, err error) { return globalRand.Read(p) }
   383  
   384  // NormFloat64 returns a normally distributed float64 in the range
   385  // [-math.MaxFloat64, +math.MaxFloat64] with
   386  // standard normal distribution (mean = 0, stddev = 1)
   387  // from the default Source.
   388  // To produce a different normal distribution, callers can
   389  // adjust the output using:
   390  //
   391  //	sample = NormFloat64() * desiredStdDev + desiredMean
   392  func NormFloat64() float64 { return globalRand.NormFloat64() }
   393  
   394  // ExpFloat64 returns an exponentially distributed float64 in the range
   395  // (0, +math.MaxFloat64] with an exponential distribution whose rate parameter
   396  // (lambda) is 1 and whose mean is 1/lambda (1) from the default Source.
   397  // To produce a distribution with a different rate parameter,
   398  // callers can adjust the output using:
   399  //
   400  //	sample = ExpFloat64() / desiredRateParameter
   401  func ExpFloat64() float64 { return globalRand.ExpFloat64() }
   402  
   403  type lockedSource struct {
   404  	lk sync.Mutex
   405  	s  *rngSource // nil if not yet allocated
   406  }
   407  
   408  //go:linkname fastrand64
   409  func fastrand64() uint64
   410  
   411  var randautoseed = godebug.New("randautoseed")
   412  
   413  // source returns r.s, allocating and seeding it if needed.
   414  // The caller must have locked r.
   415  func (r *lockedSource) source() *rngSource {
   416  	if r.s == nil {
   417  		var seed int64
   418  		if randautoseed.Value() == "0" {
   419  			seed = 1
   420  		} else {
   421  			seed = int64(fastrand64())
   422  		}
   423  		r.s = newSource(seed)
   424  	}
   425  	return r.s
   426  }
   427  
   428  func (r *lockedSource) Int63() (n int64) {
   429  	r.lk.Lock()
   430  	n = r.source().Int63()
   431  	r.lk.Unlock()
   432  	return
   433  }
   434  
   435  func (r *lockedSource) Uint64() (n uint64) {
   436  	r.lk.Lock()
   437  	n = r.source().Uint64()
   438  	r.lk.Unlock()
   439  	return
   440  }
   441  
   442  func (r *lockedSource) Seed(seed int64) {
   443  	r.lk.Lock()
   444  	r.seed(seed)
   445  	r.lk.Unlock()
   446  }
   447  
   448  // seedPos implements Seed for a lockedSource without a race condition.
   449  func (r *lockedSource) seedPos(seed int64, readPos *int8) {
   450  	r.lk.Lock()
   451  	r.seed(seed)
   452  	*readPos = 0
   453  	r.lk.Unlock()
   454  }
   455  
   456  // seed seeds the underlying source.
   457  // The caller must have locked r.lk.
   458  func (r *lockedSource) seed(seed int64) {
   459  	if r.s == nil {
   460  		r.s = newSource(seed)
   461  	} else {
   462  		r.s.Seed(seed)
   463  	}
   464  }
   465  
   466  // read implements Read for a lockedSource without a race condition.
   467  func (r *lockedSource) read(p []byte, readVal *int64, readPos *int8) (n int, err error) {
   468  	r.lk.Lock()
   469  	n, err = read(p, r.source(), readVal, readPos)
   470  	r.lk.Unlock()
   471  	return
   472  }
   473  

View as plain text