Source file src/regexp/regexp.go

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package regexp implements regular expression search.
     6  //
     7  // The syntax of the regular expressions accepted is the same
     8  // general syntax used by Perl, Python, and other languages.
     9  // More precisely, it is the syntax accepted by RE2 and described at
    10  // https://golang.org/s/re2syntax, except for \C.
    11  // For an overview of the syntax, run
    12  //
    13  //	go doc regexp/syntax
    14  //
    15  // The regexp implementation provided by this package is
    16  // guaranteed to run in time linear in the size of the input.
    17  // (This is a property not guaranteed by most open source
    18  // implementations of regular expressions.) For more information
    19  // about this property, see
    20  //
    21  //	https://swtch.com/~rsc/regexp/regexp1.html
    22  //
    23  // or any book about automata theory.
    24  //
    25  // All characters are UTF-8-encoded code points.
    26  // Following utf8.DecodeRune, each byte of an invalid UTF-8 sequence
    27  // is treated as if it encoded utf8.RuneError (U+FFFD).
    28  //
    29  // There are 16 methods of Regexp that match a regular expression and identify
    30  // the matched text. Their names are matched by this regular expression:
    31  //
    32  //	Find(All)?(String)?(Submatch)?(Index)?
    33  //
    34  // If 'All' is present, the routine matches successive non-overlapping
    35  // matches of the entire expression. Empty matches abutting a preceding
    36  // match are ignored. The return value is a slice containing the successive
    37  // return values of the corresponding non-'All' routine. These routines take
    38  // an extra integer argument, n. If n >= 0, the function returns at most n
    39  // matches/submatches; otherwise, it returns all of them.
    40  //
    41  // If 'String' is present, the argument is a string; otherwise it is a slice
    42  // of bytes; return values are adjusted as appropriate.
    43  //
    44  // If 'Submatch' is present, the return value is a slice identifying the
    45  // successive submatches of the expression. Submatches are matches of
    46  // parenthesized subexpressions (also known as capturing groups) within the
    47  // regular expression, numbered from left to right in order of opening
    48  // parenthesis. Submatch 0 is the match of the entire expression, submatch 1 is
    49  // the match of the first parenthesized subexpression, and so on.
    50  //
    51  // If 'Index' is present, matches and submatches are identified by byte index
    52  // pairs within the input string: result[2*n:2*n+2] identifies the indexes of
    53  // the nth submatch. The pair for n==0 identifies the match of the entire
    54  // expression. If 'Index' is not present, the match is identified by the text
    55  // of the match/submatch. If an index is negative or text is nil, it means that
    56  // subexpression did not match any string in the input. For 'String' versions
    57  // an empty string means either no match or an empty match.
    58  //
    59  // There is also a subset of the methods that can be applied to text read
    60  // from a RuneReader:
    61  //
    62  //	MatchReader, FindReaderIndex, FindReaderSubmatchIndex
    63  //
    64  // This set may grow. Note that regular expression matches may need to
    65  // examine text beyond the text returned by a match, so the methods that
    66  // match text from a RuneReader may read arbitrarily far into the input
    67  // before returning.
    68  //
    69  // (There are a few other methods that do not match this pattern.)
    70  package regexp
    71  
    72  import (
    73  	"bytes"
    74  	"io"
    75  	"regexp/syntax"
    76  	"strconv"
    77  	"strings"
    78  	"sync"
    79  	"unicode"
    80  	"unicode/utf8"
    81  )
    82  
    83  // Regexp is the representation of a compiled regular expression.
    84  // A Regexp is safe for concurrent use by multiple goroutines,
    85  // except for configuration methods, such as Longest.
    86  type Regexp struct {
    87  	expr           string       // as passed to Compile
    88  	prog           *syntax.Prog // compiled program
    89  	onepass        *onePassProg // onepass program or nil
    90  	numSubexp      int
    91  	maxBitStateLen int
    92  	subexpNames    []string
    93  	prefix         string         // required prefix in unanchored matches
    94  	prefixBytes    []byte         // prefix, as a []byte
    95  	prefixRune     rune           // first rune in prefix
    96  	prefixEnd      uint32         // pc for last rune in prefix
    97  	mpool          int            // pool for machines
    98  	matchcap       int            // size of recorded match lengths
    99  	prefixComplete bool           // prefix is the entire regexp
   100  	cond           syntax.EmptyOp // empty-width conditions required at start of match
   101  	minInputLen    int            // minimum length of the input in bytes
   102  
   103  	// This field can be modified by the Longest method,
   104  	// but it is otherwise read-only.
   105  	longest bool // whether regexp prefers leftmost-longest match
   106  }
   107  
   108  // String returns the source text used to compile the regular expression.
   109  func (re *Regexp) String() string {
   110  	return re.expr
   111  }
   112  
   113  // Copy returns a new Regexp object copied from re.
   114  // Calling Longest on one copy does not affect another.
   115  //
   116  // Deprecated: In earlier releases, when using a Regexp in multiple goroutines,
   117  // giving each goroutine its own copy helped to avoid lock contention.
   118  // As of Go 1.12, using Copy is no longer necessary to avoid lock contention.
   119  // Copy may still be appropriate if the reason for its use is to make
   120  // two copies with different Longest settings.
   121  func (re *Regexp) Copy() *Regexp {
   122  	re2 := *re
   123  	return &re2
   124  }
   125  
   126  // Compile parses a regular expression and returns, if successful,
   127  // a Regexp object that can be used to match against text.
   128  //
   129  // When matching against text, the regexp returns a match that
   130  // begins as early as possible in the input (leftmost), and among those
   131  // it chooses the one that a backtracking search would have found first.
   132  // This so-called leftmost-first matching is the same semantics
   133  // that Perl, Python, and other implementations use, although this
   134  // package implements it without the expense of backtracking.
   135  // For POSIX leftmost-longest matching, see CompilePOSIX.
   136  func Compile(expr string) (*Regexp, error) {
   137  	return compile(expr, syntax.Perl, false)
   138  }
   139  
   140  // CompilePOSIX is like Compile but restricts the regular expression
   141  // to POSIX ERE (egrep) syntax and changes the match semantics to
   142  // leftmost-longest.
   143  //
   144  // That is, when matching against text, the regexp returns a match that
   145  // begins as early as possible in the input (leftmost), and among those
   146  // it chooses a match that is as long as possible.
   147  // This so-called leftmost-longest matching is the same semantics
   148  // that early regular expression implementations used and that POSIX
   149  // specifies.
   150  //
   151  // However, there can be multiple leftmost-longest matches, with different
   152  // submatch choices, and here this package diverges from POSIX.
   153  // Among the possible leftmost-longest matches, this package chooses
   154  // the one that a backtracking search would have found first, while POSIX
   155  // specifies that the match be chosen to maximize the length of the first
   156  // subexpression, then the second, and so on from left to right.
   157  // The POSIX rule is computationally prohibitive and not even well-defined.
   158  // See https://swtch.com/~rsc/regexp/regexp2.html#posix for details.
   159  func CompilePOSIX(expr string) (*Regexp, error) {
   160  	return compile(expr, syntax.POSIX, true)
   161  }
   162  
   163  // Longest makes future searches prefer the leftmost-longest match.
   164  // That is, when matching against text, the regexp returns a match that
   165  // begins as early as possible in the input (leftmost), and among those
   166  // it chooses a match that is as long as possible.
   167  // This method modifies the Regexp and may not be called concurrently
   168  // with any other methods.
   169  func (re *Regexp) Longest() {
   170  	re.longest = true
   171  }
   172  
   173  func compile(expr string, mode syntax.Flags, longest bool) (*Regexp, error) {
   174  	re, err := syntax.Parse(expr, mode)
   175  	if err != nil {
   176  		return nil, err
   177  	}
   178  	maxCap := re.MaxCap()
   179  	capNames := re.CapNames()
   180  
   181  	re = re.Simplify()
   182  	prog, err := syntax.Compile(re)
   183  	if err != nil {
   184  		return nil, err
   185  	}
   186  	matchcap := prog.NumCap
   187  	if matchcap < 2 {
   188  		matchcap = 2
   189  	}
   190  	regexp := &Regexp{
   191  		expr:        expr,
   192  		prog:        prog,
   193  		onepass:     compileOnePass(prog),
   194  		numSubexp:   maxCap,
   195  		subexpNames: capNames,
   196  		cond:        prog.StartCond(),
   197  		longest:     longest,
   198  		matchcap:    matchcap,
   199  		minInputLen: minInputLen(re),
   200  	}
   201  	if regexp.onepass == nil {
   202  		regexp.prefix, regexp.prefixComplete = prog.Prefix()
   203  		regexp.maxBitStateLen = maxBitStateLen(prog)
   204  	} else {
   205  		regexp.prefix, regexp.prefixComplete, regexp.prefixEnd = onePassPrefix(prog)
   206  	}
   207  	if regexp.prefix != "" {
   208  		// TODO(rsc): Remove this allocation by adding
   209  		// IndexString to package bytes.
   210  		regexp.prefixBytes = []byte(regexp.prefix)
   211  		regexp.prefixRune, _ = utf8.DecodeRuneInString(regexp.prefix)
   212  	}
   213  
   214  	n := len(prog.Inst)
   215  	i := 0
   216  	for matchSize[i] != 0 && matchSize[i] < n {
   217  		i++
   218  	}
   219  	regexp.mpool = i
   220  
   221  	return regexp, nil
   222  }
   223  
   224  // Pools of *machine for use during (*Regexp).doExecute,
   225  // split up by the size of the execution queues.
   226  // matchPool[i] machines have queue size matchSize[i].
   227  // On a 64-bit system each queue entry is 16 bytes,
   228  // so matchPool[0] has 16*2*128 = 4kB queues, etc.
   229  // The final matchPool is a catch-all for very large queues.
   230  var (
   231  	matchSize = [...]int{128, 512, 2048, 16384, 0}
   232  	matchPool [len(matchSize)]sync.Pool
   233  )
   234  
   235  // get returns a machine to use for matching re.
   236  // It uses the re's machine cache if possible, to avoid
   237  // unnecessary allocation.
   238  func (re *Regexp) get() *machine {
   239  	m, ok := matchPool[re.mpool].Get().(*machine)
   240  	if !ok {
   241  		m = new(machine)
   242  	}
   243  	m.re = re
   244  	m.p = re.prog
   245  	if cap(m.matchcap) < re.matchcap {
   246  		m.matchcap = make([]int, re.matchcap)
   247  		for _, t := range m.pool {
   248  			t.cap = make([]int, re.matchcap)
   249  		}
   250  	}
   251  
   252  	// Allocate queues if needed.
   253  	// Or reallocate, for "large" match pool.
   254  	n := matchSize[re.mpool]
   255  	if n == 0 { // large pool
   256  		n = len(re.prog.Inst)
   257  	}
   258  	if len(m.q0.sparse) < n {
   259  		m.q0 = queue{make([]uint32, n), make([]entry, 0, n)}
   260  		m.q1 = queue{make([]uint32, n), make([]entry, 0, n)}
   261  	}
   262  	return m
   263  }
   264  
   265  // put returns a machine to the correct machine pool.
   266  func (re *Regexp) put(m *machine) {
   267  	m.re = nil
   268  	m.p = nil
   269  	m.inputs.clear()
   270  	matchPool[re.mpool].Put(m)
   271  }
   272  
   273  // minInputLen walks the regexp to find the minimum length of any matchable input
   274  func minInputLen(re *syntax.Regexp) int {
   275  	switch re.Op {
   276  	default:
   277  		return 0
   278  	case syntax.OpAnyChar, syntax.OpAnyCharNotNL, syntax.OpCharClass:
   279  		return 1
   280  	case syntax.OpLiteral:
   281  		l := 0
   282  		for _, r := range re.Rune {
   283  			if r == utf8.RuneError {
   284  				l++
   285  			} else {
   286  				l += utf8.RuneLen(r)
   287  			}
   288  		}
   289  		return l
   290  	case syntax.OpCapture, syntax.OpPlus:
   291  		return minInputLen(re.Sub[0])
   292  	case syntax.OpRepeat:
   293  		return re.Min * minInputLen(re.Sub[0])
   294  	case syntax.OpConcat:
   295  		l := 0
   296  		for _, sub := range re.Sub {
   297  			l += minInputLen(sub)
   298  		}
   299  		return l
   300  	case syntax.OpAlternate:
   301  		l := minInputLen(re.Sub[0])
   302  		var lnext int
   303  		for _, sub := range re.Sub[1:] {
   304  			lnext = minInputLen(sub)
   305  			if lnext < l {
   306  				l = lnext
   307  			}
   308  		}
   309  		return l
   310  	}
   311  }
   312  
   313  // MustCompile is like Compile but panics if the expression cannot be parsed.
   314  // It simplifies safe initialization of global variables holding compiled regular
   315  // expressions.
   316  func MustCompile(str string) *Regexp {
   317  	regexp, err := Compile(str)
   318  	if err != nil {
   319  		panic(`regexp: Compile(` + quote(str) + `): ` + err.Error())
   320  	}
   321  	return regexp
   322  }
   323  
   324  // MustCompilePOSIX is like CompilePOSIX but panics if the expression cannot be parsed.
   325  // It simplifies safe initialization of global variables holding compiled regular
   326  // expressions.
   327  func MustCompilePOSIX(str string) *Regexp {
   328  	regexp, err := CompilePOSIX(str)
   329  	if err != nil {
   330  		panic(`regexp: CompilePOSIX(` + quote(str) + `): ` + err.Error())
   331  	}
   332  	return regexp
   333  }
   334  
   335  func quote(s string) string {
   336  	if strconv.CanBackquote(s) {
   337  		return "`" + s + "`"
   338  	}
   339  	return strconv.Quote(s)
   340  }
   341  
   342  // NumSubexp returns the number of parenthesized subexpressions in this Regexp.
   343  func (re *Regexp) NumSubexp() int {
   344  	return re.numSubexp
   345  }
   346  
   347  // SubexpNames returns the names of the parenthesized subexpressions
   348  // in this Regexp. The name for the first sub-expression is names[1],
   349  // so that if m is a match slice, the name for m[i] is SubexpNames()[i].
   350  // Since the Regexp as a whole cannot be named, names[0] is always
   351  // the empty string. The slice should not be modified.
   352  func (re *Regexp) SubexpNames() []string {
   353  	return re.subexpNames
   354  }
   355  
   356  // SubexpIndex returns the index of the first subexpression with the given name,
   357  // or -1 if there is no subexpression with that name.
   358  //
   359  // Note that multiple subexpressions can be written using the same name, as in
   360  // (?P<bob>a+)(?P<bob>b+), which declares two subexpressions named "bob".
   361  // In this case, SubexpIndex returns the index of the leftmost such subexpression
   362  // in the regular expression.
   363  func (re *Regexp) SubexpIndex(name string) int {
   364  	if name != "" {
   365  		for i, s := range re.subexpNames {
   366  			if name == s {
   367  				return i
   368  			}
   369  		}
   370  	}
   371  	return -1
   372  }
   373  
   374  const endOfText rune = -1
   375  
   376  // input abstracts different representations of the input text. It provides
   377  // one-character lookahead.
   378  type input interface {
   379  	step(pos int) (r rune, width int) // advance one rune
   380  	canCheckPrefix() bool             // can we look ahead without losing info?
   381  	hasPrefix(re *Regexp) bool
   382  	index(re *Regexp, pos int) int
   383  	context(pos int) lazyFlag
   384  }
   385  
   386  // inputString scans a string.
   387  type inputString struct {
   388  	str string
   389  }
   390  
   391  func (i *inputString) step(pos int) (rune, int) {
   392  	if pos < len(i.str) {
   393  		c := i.str[pos]
   394  		if c < utf8.RuneSelf {
   395  			return rune(c), 1
   396  		}
   397  		return utf8.DecodeRuneInString(i.str[pos:])
   398  	}
   399  	return endOfText, 0
   400  }
   401  
   402  func (i *inputString) canCheckPrefix() bool {
   403  	return true
   404  }
   405  
   406  func (i *inputString) hasPrefix(re *Regexp) bool {
   407  	return strings.HasPrefix(i.str, re.prefix)
   408  }
   409  
   410  func (i *inputString) index(re *Regexp, pos int) int {
   411  	return strings.Index(i.str[pos:], re.prefix)
   412  }
   413  
   414  func (i *inputString) context(pos int) lazyFlag {
   415  	r1, r2 := endOfText, endOfText
   416  	// 0 < pos && pos <= len(i.str)
   417  	if uint(pos-1) < uint(len(i.str)) {
   418  		r1 = rune(i.str[pos-1])
   419  		if r1 >= utf8.RuneSelf {
   420  			r1, _ = utf8.DecodeLastRuneInString(i.str[:pos])
   421  		}
   422  	}
   423  	// 0 <= pos && pos < len(i.str)
   424  	if uint(pos) < uint(len(i.str)) {
   425  		r2 = rune(i.str[pos])
   426  		if r2 >= utf8.RuneSelf {
   427  			r2, _ = utf8.DecodeRuneInString(i.str[pos:])
   428  		}
   429  	}
   430  	return newLazyFlag(r1, r2)
   431  }
   432  
   433  // inputBytes scans a byte slice.
   434  type inputBytes struct {
   435  	str []byte
   436  }
   437  
   438  func (i *inputBytes) step(pos int) (rune, int) {
   439  	if pos < len(i.str) {
   440  		c := i.str[pos]
   441  		if c < utf8.RuneSelf {
   442  			return rune(c), 1
   443  		}
   444  		return utf8.DecodeRune(i.str[pos:])
   445  	}
   446  	return endOfText, 0
   447  }
   448  
   449  func (i *inputBytes) canCheckPrefix() bool {
   450  	return true
   451  }
   452  
   453  func (i *inputBytes) hasPrefix(re *Regexp) bool {
   454  	return bytes.HasPrefix(i.str, re.prefixBytes)
   455  }
   456  
   457  func (i *inputBytes) index(re *Regexp, pos int) int {
   458  	return bytes.Index(i.str[pos:], re.prefixBytes)
   459  }
   460  
   461  func (i *inputBytes) context(pos int) lazyFlag {
   462  	r1, r2 := endOfText, endOfText
   463  	// 0 < pos && pos <= len(i.str)
   464  	if uint(pos-1) < uint(len(i.str)) {
   465  		r1 = rune(i.str[pos-1])
   466  		if r1 >= utf8.RuneSelf {
   467  			r1, _ = utf8.DecodeLastRune(i.str[:pos])
   468  		}
   469  	}
   470  	// 0 <= pos && pos < len(i.str)
   471  	if uint(pos) < uint(len(i.str)) {
   472  		r2 = rune(i.str[pos])
   473  		if r2 >= utf8.RuneSelf {
   474  			r2, _ = utf8.DecodeRune(i.str[pos:])
   475  		}
   476  	}
   477  	return newLazyFlag(r1, r2)
   478  }
   479  
   480  // inputReader scans a RuneReader.
   481  type inputReader struct {
   482  	r     io.RuneReader
   483  	atEOT bool
   484  	pos   int
   485  }
   486  
   487  func (i *inputReader) step(pos int) (rune, int) {
   488  	if !i.atEOT && pos != i.pos {
   489  		return endOfText, 0
   490  
   491  	}
   492  	r, w, err := i.r.ReadRune()
   493  	if err != nil {
   494  		i.atEOT = true
   495  		return endOfText, 0
   496  	}
   497  	i.pos += w
   498  	return r, w
   499  }
   500  
   501  func (i *inputReader) canCheckPrefix() bool {
   502  	return false
   503  }
   504  
   505  func (i *inputReader) hasPrefix(re *Regexp) bool {
   506  	return false
   507  }
   508  
   509  func (i *inputReader) index(re *Regexp, pos int) int {
   510  	return -1
   511  }
   512  
   513  func (i *inputReader) context(pos int) lazyFlag {
   514  	return 0 // not used
   515  }
   516  
   517  // LiteralPrefix returns a literal string that must begin any match
   518  // of the regular expression re. It returns the boolean true if the
   519  // literal string comprises the entire regular expression.
   520  func (re *Regexp) LiteralPrefix() (prefix string, complete bool) {
   521  	return re.prefix, re.prefixComplete
   522  }
   523  
   524  // MatchReader reports whether the text returned by the RuneReader
   525  // contains any match of the regular expression re.
   526  func (re *Regexp) MatchReader(r io.RuneReader) bool {
   527  	return re.doMatch(r, nil, "")
   528  }
   529  
   530  // MatchString reports whether the string s
   531  // contains any match of the regular expression re.
   532  func (re *Regexp) MatchString(s string) bool {
   533  	return re.doMatch(nil, nil, s)
   534  }
   535  
   536  // Match reports whether the byte slice b
   537  // contains any match of the regular expression re.
   538  func (re *Regexp) Match(b []byte) bool {
   539  	return re.doMatch(nil, b, "")
   540  }
   541  
   542  // MatchReader reports whether the text returned by the RuneReader
   543  // contains any match of the regular expression pattern.
   544  // More complicated queries need to use Compile and the full Regexp interface.
   545  func MatchReader(pattern string, r io.RuneReader) (matched bool, err error) {
   546  	re, err := Compile(pattern)
   547  	if err != nil {
   548  		return false, err
   549  	}
   550  	return re.MatchReader(r), nil
   551  }
   552  
   553  // MatchString reports whether the string s
   554  // contains any match of the regular expression pattern.
   555  // More complicated queries need to use Compile and the full Regexp interface.
   556  func MatchString(pattern string, s string) (matched bool, err error) {
   557  	re, err := Compile(pattern)
   558  	if err != nil {
   559  		return false, err
   560  	}
   561  	return re.MatchString(s), nil
   562  }
   563  
   564  // Match reports whether the byte slice b
   565  // contains any match of the regular expression pattern.
   566  // More complicated queries need to use Compile and the full Regexp interface.
   567  func Match(pattern string, b []byte) (matched bool, err error) {
   568  	re, err := Compile(pattern)
   569  	if err != nil {
   570  		return false, err
   571  	}
   572  	return re.Match(b), nil
   573  }
   574  
   575  // ReplaceAllString returns a copy of src, replacing matches of the Regexp
   576  // with the replacement string repl. Inside repl, $ signs are interpreted as
   577  // in Expand, so for instance $1 represents the text of the first submatch.
   578  func (re *Regexp) ReplaceAllString(src, repl string) string {
   579  	n := 2
   580  	if strings.Contains(repl, "$") {
   581  		n = 2 * (re.numSubexp + 1)
   582  	}
   583  	b := re.replaceAll(nil, src, n, func(dst []byte, match []int) []byte {
   584  		return re.expand(dst, repl, nil, src, match)
   585  	})
   586  	return string(b)
   587  }
   588  
   589  // ReplaceAllLiteralString returns a copy of src, replacing matches of the Regexp
   590  // with the replacement string repl. The replacement repl is substituted directly,
   591  // without using Expand.
   592  func (re *Regexp) ReplaceAllLiteralString(src, repl string) string {
   593  	return string(re.replaceAll(nil, src, 2, func(dst []byte, match []int) []byte {
   594  		return append(dst, repl...)
   595  	}))
   596  }
   597  
   598  // ReplaceAllStringFunc returns a copy of src in which all matches of the
   599  // Regexp have been replaced by the return value of function repl applied
   600  // to the matched substring. The replacement returned by repl is substituted
   601  // directly, without using Expand.
   602  func (re *Regexp) ReplaceAllStringFunc(src string, repl func(string) string) string {
   603  	b := re.replaceAll(nil, src, 2, func(dst []byte, match []int) []byte {
   604  		return append(dst, repl(src[match[0]:match[1]])...)
   605  	})
   606  	return string(b)
   607  }
   608  
   609  func (re *Regexp) replaceAll(bsrc []byte, src string, nmatch int, repl func(dst []byte, m []int) []byte) []byte {
   610  	lastMatchEnd := 0 // end position of the most recent match
   611  	searchPos := 0    // position where we next look for a match
   612  	var buf []byte
   613  	var endPos int
   614  	if bsrc != nil {
   615  		endPos = len(bsrc)
   616  	} else {
   617  		endPos = len(src)
   618  	}
   619  	if nmatch > re.prog.NumCap {
   620  		nmatch = re.prog.NumCap
   621  	}
   622  
   623  	var dstCap [2]int
   624  	for searchPos <= endPos {
   625  		a := re.doExecute(nil, bsrc, src, searchPos, nmatch, dstCap[:0])
   626  		if len(a) == 0 {
   627  			break // no more matches
   628  		}
   629  
   630  		// Copy the unmatched characters before this match.
   631  		if bsrc != nil {
   632  			buf = append(buf, bsrc[lastMatchEnd:a[0]]...)
   633  		} else {
   634  			buf = append(buf, src[lastMatchEnd:a[0]]...)
   635  		}
   636  
   637  		// Now insert a copy of the replacement string, but not for a
   638  		// match of the empty string immediately after another match.
   639  		// (Otherwise, we get double replacement for patterns that
   640  		// match both empty and nonempty strings.)
   641  		if a[1] > lastMatchEnd || a[0] == 0 {
   642  			buf = repl(buf, a)
   643  		}
   644  		lastMatchEnd = a[1]
   645  
   646  		// Advance past this match; always advance at least one character.
   647  		var width int
   648  		if bsrc != nil {
   649  			_, width = utf8.DecodeRune(bsrc[searchPos:])
   650  		} else {
   651  			_, width = utf8.DecodeRuneInString(src[searchPos:])
   652  		}
   653  		if searchPos+width > a[1] {
   654  			searchPos += width
   655  		} else if searchPos+1 > a[1] {
   656  			// This clause is only needed at the end of the input
   657  			// string. In that case, DecodeRuneInString returns width=0.
   658  			searchPos++
   659  		} else {
   660  			searchPos = a[1]
   661  		}
   662  	}
   663  
   664  	// Copy the unmatched characters after the last match.
   665  	if bsrc != nil {
   666  		buf = append(buf, bsrc[lastMatchEnd:]...)
   667  	} else {
   668  		buf = append(buf, src[lastMatchEnd:]...)
   669  	}
   670  
   671  	return buf
   672  }
   673  
   674  // ReplaceAll returns a copy of src, replacing matches of the Regexp
   675  // with the replacement text repl. Inside repl, $ signs are interpreted as
   676  // in Expand, so for instance $1 represents the text of the first submatch.
   677  func (re *Regexp) ReplaceAll(src, repl []byte) []byte {
   678  	n := 2
   679  	if bytes.IndexByte(repl, '$') >= 0 {
   680  		n = 2 * (re.numSubexp + 1)
   681  	}
   682  	srepl := ""
   683  	b := re.replaceAll(src, "", n, func(dst []byte, match []int) []byte {
   684  		if len(srepl) != len(repl) {
   685  			srepl = string(repl)
   686  		}
   687  		return re.expand(dst, srepl, src, "", match)
   688  	})
   689  	return b
   690  }
   691  
   692  // ReplaceAllLiteral returns a copy of src, replacing matches of the Regexp
   693  // with the replacement bytes repl. The replacement repl is substituted directly,
   694  // without using Expand.
   695  func (re *Regexp) ReplaceAllLiteral(src, repl []byte) []byte {
   696  	return re.replaceAll(src, "", 2, func(dst []byte, match []int) []byte {
   697  		return append(dst, repl...)
   698  	})
   699  }
   700  
   701  // ReplaceAllFunc returns a copy of src in which all matches of the
   702  // Regexp have been replaced by the return value of function repl applied
   703  // to the matched byte slice. The replacement returned by repl is substituted
   704  // directly, without using Expand.
   705  func (re *Regexp) ReplaceAllFunc(src []byte, repl func([]byte) []byte) []byte {
   706  	return re.replaceAll(src, "", 2, func(dst []byte, match []int) []byte {
   707  		return append(dst, repl(src[match[0]:match[1]])...)
   708  	})
   709  }
   710  
   711  // Bitmap used by func special to check whether a character needs to be escaped.
   712  var specialBytes [16]byte
   713  
   714  // special reports whether byte b needs to be escaped by QuoteMeta.
   715  func special(b byte) bool {
   716  	return b < utf8.RuneSelf && specialBytes[b%16]&(1<<(b/16)) != 0
   717  }
   718  
   719  func init() {
   720  	for _, b := range []byte(`\.+*?()|[]{}^$`) {
   721  		specialBytes[b%16] |= 1 << (b / 16)
   722  	}
   723  }
   724  
   725  // QuoteMeta returns a string that escapes all regular expression metacharacters
   726  // inside the argument text; the returned string is a regular expression matching
   727  // the literal text.
   728  func QuoteMeta(s string) string {
   729  	// A byte loop is correct because all metacharacters are ASCII.
   730  	var i int
   731  	for i = 0; i < len(s); i++ {
   732  		if special(s[i]) {
   733  			break
   734  		}
   735  	}
   736  	// No meta characters found, so return original string.
   737  	if i >= len(s) {
   738  		return s
   739  	}
   740  
   741  	b := make([]byte, 2*len(s)-i)
   742  	copy(b, s[:i])
   743  	j := i
   744  	for ; i < len(s); i++ {
   745  		if special(s[i]) {
   746  			b[j] = '\\'
   747  			j++
   748  		}
   749  		b[j] = s[i]
   750  		j++
   751  	}
   752  	return string(b[:j])
   753  }
   754  
   755  // The number of capture values in the program may correspond
   756  // to fewer capturing expressions than are in the regexp.
   757  // For example, "(a){0}" turns into an empty program, so the
   758  // maximum capture in the program is 0 but we need to return
   759  // an expression for \1.  Pad appends -1s to the slice a as needed.
   760  func (re *Regexp) pad(a []int) []int {
   761  	if a == nil {
   762  		// No match.
   763  		return nil
   764  	}
   765  	n := (1 + re.numSubexp) * 2
   766  	for len(a) < n {
   767  		a = append(a, -1)
   768  	}
   769  	return a
   770  }
   771  
   772  // allMatches calls deliver at most n times
   773  // with the location of successive matches in the input text.
   774  // The input text is b if non-nil, otherwise s.
   775  func (re *Regexp) allMatches(s string, b []byte, n int, deliver func([]int)) {
   776  	var end int
   777  	if b == nil {
   778  		end = len(s)
   779  	} else {
   780  		end = len(b)
   781  	}
   782  
   783  	for pos, i, prevMatchEnd := 0, 0, -1; i < n && pos <= end; {
   784  		matches := re.doExecute(nil, b, s, pos, re.prog.NumCap, nil)
   785  		if len(matches) == 0 {
   786  			break
   787  		}
   788  
   789  		accept := true
   790  		if matches[1] == pos {
   791  			// We've found an empty match.
   792  			if matches[0] == prevMatchEnd {
   793  				// We don't allow an empty match right
   794  				// after a previous match, so ignore it.
   795  				accept = false
   796  			}
   797  			var width int
   798  			if b == nil {
   799  				is := inputString{str: s}
   800  				_, width = is.step(pos)
   801  			} else {
   802  				ib := inputBytes{str: b}
   803  				_, width = ib.step(pos)
   804  			}
   805  			if width > 0 {
   806  				pos += width
   807  			} else {
   808  				pos = end + 1
   809  			}
   810  		} else {
   811  			pos = matches[1]
   812  		}
   813  		prevMatchEnd = matches[1]
   814  
   815  		if accept {
   816  			deliver(re.pad(matches))
   817  			i++
   818  		}
   819  	}
   820  }
   821  
   822  // Find returns a slice holding the text of the leftmost match in b of the regular expression.
   823  // A return value of nil indicates no match.
   824  func (re *Regexp) Find(b []byte) []byte {
   825  	var dstCap [2]int
   826  	a := re.doExecute(nil, b, "", 0, 2, dstCap[:0])
   827  	if a == nil {
   828  		return nil
   829  	}
   830  	return b[a[0]:a[1]:a[1]]
   831  }
   832  
   833  // FindIndex returns a two-element slice of integers defining the location of
   834  // the leftmost match in b of the regular expression. The match itself is at
   835  // b[loc[0]:loc[1]].
   836  // A return value of nil indicates no match.
   837  func (re *Regexp) FindIndex(b []byte) (loc []int) {
   838  	a := re.doExecute(nil, b, "", 0, 2, nil)
   839  	if a == nil {
   840  		return nil
   841  	}
   842  	return a[0:2]
   843  }
   844  
   845  // FindString returns a string holding the text of the leftmost match in s of the regular
   846  // expression. If there is no match, the return value is an empty string,
   847  // but it will also be empty if the regular expression successfully matches
   848  // an empty string. Use FindStringIndex or FindStringSubmatch if it is
   849  // necessary to distinguish these cases.
   850  func (re *Regexp) FindString(s string) string {
   851  	var dstCap [2]int
   852  	a := re.doExecute(nil, nil, s, 0, 2, dstCap[:0])
   853  	if a == nil {
   854  		return ""
   855  	}
   856  	return s[a[0]:a[1]]
   857  }
   858  
   859  // FindStringIndex returns a two-element slice of integers defining the
   860  // location of the leftmost match in s of the regular expression. The match
   861  // itself is at s[loc[0]:loc[1]].
   862  // A return value of nil indicates no match.
   863  func (re *Regexp) FindStringIndex(s string) (loc []int) {
   864  	a := re.doExecute(nil, nil, s, 0, 2, nil)
   865  	if a == nil {
   866  		return nil
   867  	}
   868  	return a[0:2]
   869  }
   870  
   871  // FindReaderIndex returns a two-element slice of integers defining the
   872  // location of the leftmost match of the regular expression in text read from
   873  // the RuneReader. The match text was found in the input stream at
   874  // byte offset loc[0] through loc[1]-1.
   875  // A return value of nil indicates no match.
   876  func (re *Regexp) FindReaderIndex(r io.RuneReader) (loc []int) {
   877  	a := re.doExecute(r, nil, "", 0, 2, nil)
   878  	if a == nil {
   879  		return nil
   880  	}
   881  	return a[0:2]
   882  }
   883  
   884  // FindSubmatch returns a slice of slices holding the text of the leftmost
   885  // match of the regular expression in b and the matches, if any, of its
   886  // subexpressions, as defined by the 'Submatch' descriptions in the package
   887  // comment.
   888  // A return value of nil indicates no match.
   889  func (re *Regexp) FindSubmatch(b []byte) [][]byte {
   890  	var dstCap [4]int
   891  	a := re.doExecute(nil, b, "", 0, re.prog.NumCap, dstCap[:0])
   892  	if a == nil {
   893  		return nil
   894  	}
   895  	ret := make([][]byte, 1+re.numSubexp)
   896  	for i := range ret {
   897  		if 2*i < len(a) && a[2*i] >= 0 {
   898  			ret[i] = b[a[2*i]:a[2*i+1]:a[2*i+1]]
   899  		}
   900  	}
   901  	return ret
   902  }
   903  
   904  // Expand appends template to dst and returns the result; during the
   905  // append, Expand replaces variables in the template with corresponding
   906  // matches drawn from src. The match slice should have been returned by
   907  // FindSubmatchIndex.
   908  //
   909  // In the template, a variable is denoted by a substring of the form
   910  // $name or ${name}, where name is a non-empty sequence of letters,
   911  // digits, and underscores. A purely numeric name like $1 refers to
   912  // the submatch with the corresponding index; other names refer to
   913  // capturing parentheses named with the (?P<name>...) syntax. A
   914  // reference to an out of range or unmatched index or a name that is not
   915  // present in the regular expression is replaced with an empty slice.
   916  //
   917  // In the $name form, name is taken to be as long as possible: $1x is
   918  // equivalent to ${1x}, not ${1}x, and, $10 is equivalent to ${10}, not ${1}0.
   919  //
   920  // To insert a literal $ in the output, use $$ in the template.
   921  func (re *Regexp) Expand(dst []byte, template []byte, src []byte, match []int) []byte {
   922  	return re.expand(dst, string(template), src, "", match)
   923  }
   924  
   925  // ExpandString is like Expand but the template and source are strings.
   926  // It appends to and returns a byte slice in order to give the calling
   927  // code control over allocation.
   928  func (re *Regexp) ExpandString(dst []byte, template string, src string, match []int) []byte {
   929  	return re.expand(dst, template, nil, src, match)
   930  }
   931  
   932  func (re *Regexp) expand(dst []byte, template string, bsrc []byte, src string, match []int) []byte {
   933  	for len(template) > 0 {
   934  		before, after, ok := strings.Cut(template, "$")
   935  		if !ok {
   936  			break
   937  		}
   938  		dst = append(dst, before...)
   939  		template = after
   940  		if template != "" && template[0] == '$' {
   941  			// Treat $$ as $.
   942  			dst = append(dst, '$')
   943  			template = template[1:]
   944  			continue
   945  		}
   946  		name, num, rest, ok := extract(template)
   947  		if !ok {
   948  			// Malformed; treat $ as raw text.
   949  			dst = append(dst, '$')
   950  			continue
   951  		}
   952  		template = rest
   953  		if num >= 0 {
   954  			if 2*num+1 < len(match) && match[2*num] >= 0 {
   955  				if bsrc != nil {
   956  					dst = append(dst, bsrc[match[2*num]:match[2*num+1]]...)
   957  				} else {
   958  					dst = append(dst, src[match[2*num]:match[2*num+1]]...)
   959  				}
   960  			}
   961  		} else {
   962  			for i, namei := range re.subexpNames {
   963  				if name == namei && 2*i+1 < len(match) && match[2*i] >= 0 {
   964  					if bsrc != nil {
   965  						dst = append(dst, bsrc[match[2*i]:match[2*i+1]]...)
   966  					} else {
   967  						dst = append(dst, src[match[2*i]:match[2*i+1]]...)
   968  					}
   969  					break
   970  				}
   971  			}
   972  		}
   973  	}
   974  	dst = append(dst, template...)
   975  	return dst
   976  }
   977  
   978  // extract returns the name from a leading "name" or "{name}" in str.
   979  // (The $ has already been removed by the caller.)
   980  // If it is a number, extract returns num set to that number; otherwise num = -1.
   981  func extract(str string) (name string, num int, rest string, ok bool) {
   982  	if str == "" {
   983  		return
   984  	}
   985  	brace := false
   986  	if str[0] == '{' {
   987  		brace = true
   988  		str = str[1:]
   989  	}
   990  	i := 0
   991  	for i < len(str) {
   992  		rune, size := utf8.DecodeRuneInString(str[i:])
   993  		if !unicode.IsLetter(rune) && !unicode.IsDigit(rune) && rune != '_' {
   994  			break
   995  		}
   996  		i += size
   997  	}
   998  	if i == 0 {
   999  		// empty name is not okay
  1000  		return
  1001  	}
  1002  	name = str[:i]
  1003  	if brace {
  1004  		if i >= len(str) || str[i] != '}' {
  1005  			// missing closing brace
  1006  			return
  1007  		}
  1008  		i++
  1009  	}
  1010  
  1011  	// Parse number.
  1012  	num = 0
  1013  	for i := 0; i < len(name); i++ {
  1014  		if name[i] < '0' || '9' < name[i] || num >= 1e8 {
  1015  			num = -1
  1016  			break
  1017  		}
  1018  		num = num*10 + int(name[i]) - '0'
  1019  	}
  1020  	// Disallow leading zeros.
  1021  	if name[0] == '0' && len(name) > 1 {
  1022  		num = -1
  1023  	}
  1024  
  1025  	rest = str[i:]
  1026  	ok = true
  1027  	return
  1028  }
  1029  
  1030  // FindSubmatchIndex returns a slice holding the index pairs identifying the
  1031  // leftmost match of the regular expression in b and the matches, if any, of
  1032  // its subexpressions, as defined by the 'Submatch' and 'Index' descriptions
  1033  // in the package comment.
  1034  // A return value of nil indicates no match.
  1035  func (re *Regexp) FindSubmatchIndex(b []byte) []int {
  1036  	return re.pad(re.doExecute(nil, b, "", 0, re.prog.NumCap, nil))
  1037  }
  1038  
  1039  // FindStringSubmatch returns a slice of strings holding the text of the
  1040  // leftmost match of the regular expression in s and the matches, if any, of
  1041  // its subexpressions, as defined by the 'Submatch' description in the
  1042  // package comment.
  1043  // A return value of nil indicates no match.
  1044  func (re *Regexp) FindStringSubmatch(s string) []string {
  1045  	var dstCap [4]int
  1046  	a := re.doExecute(nil, nil, s, 0, re.prog.NumCap, dstCap[:0])
  1047  	if a == nil {
  1048  		return nil
  1049  	}
  1050  	ret := make([]string, 1+re.numSubexp)
  1051  	for i := range ret {
  1052  		if 2*i < len(a) && a[2*i] >= 0 {
  1053  			ret[i] = s[a[2*i]:a[2*i+1]]
  1054  		}
  1055  	}
  1056  	return ret
  1057  }
  1058  
  1059  // FindStringSubmatchIndex returns a slice holding the index pairs
  1060  // identifying the leftmost match of the regular expression in s and the
  1061  // matches, if any, of its subexpressions, as defined by the 'Submatch' and
  1062  // 'Index' descriptions in the package comment.
  1063  // A return value of nil indicates no match.
  1064  func (re *Regexp) FindStringSubmatchIndex(s string) []int {
  1065  	return re.pad(re.doExecute(nil, nil, s, 0, re.prog.NumCap, nil))
  1066  }
  1067  
  1068  // FindReaderSubmatchIndex returns a slice holding the index pairs
  1069  // identifying the leftmost match of the regular expression of text read by
  1070  // the RuneReader, and the matches, if any, of its subexpressions, as defined
  1071  // by the 'Submatch' and 'Index' descriptions in the package comment. A
  1072  // return value of nil indicates no match.
  1073  func (re *Regexp) FindReaderSubmatchIndex(r io.RuneReader) []int {
  1074  	return re.pad(re.doExecute(r, nil, "", 0, re.prog.NumCap, nil))
  1075  }
  1076  
  1077  const startSize = 10 // The size at which to start a slice in the 'All' routines.
  1078  
  1079  // FindAll is the 'All' version of Find; it returns a slice of all successive
  1080  // matches of the expression, as defined by the 'All' description in the
  1081  // package comment.
  1082  // A return value of nil indicates no match.
  1083  func (re *Regexp) FindAll(b []byte, n int) [][]byte {
  1084  	if n < 0 {
  1085  		n = len(b) + 1
  1086  	}
  1087  	var result [][]byte
  1088  	re.allMatches("", b, n, func(match []int) {
  1089  		if result == nil {
  1090  			result = make([][]byte, 0, startSize)
  1091  		}
  1092  		result = append(result, b[match[0]:match[1]:match[1]])
  1093  	})
  1094  	return result
  1095  }
  1096  
  1097  // FindAllIndex is the 'All' version of FindIndex; it returns a slice of all
  1098  // successive matches of the expression, as defined by the 'All' description
  1099  // in the package comment.
  1100  // A return value of nil indicates no match.
  1101  func (re *Regexp) FindAllIndex(b []byte, n int) [][]int {
  1102  	if n < 0 {
  1103  		n = len(b) + 1
  1104  	}
  1105  	var result [][]int
  1106  	re.allMatches("", b, n, func(match []int) {
  1107  		if result == nil {
  1108  			result = make([][]int, 0, startSize)
  1109  		}
  1110  		result = append(result, match[0:2])
  1111  	})
  1112  	return result
  1113  }
  1114  
  1115  // FindAllString is the 'All' version of FindString; it returns a slice of all
  1116  // successive matches of the expression, as defined by the 'All' description
  1117  // in the package comment.
  1118  // A return value of nil indicates no match.
  1119  func (re *Regexp) FindAllString(s string, n int) []string {
  1120  	if n < 0 {
  1121  		n = len(s) + 1
  1122  	}
  1123  	var result []string
  1124  	re.allMatches(s, nil, n, func(match []int) {
  1125  		if result == nil {
  1126  			result = make([]string, 0, startSize)
  1127  		}
  1128  		result = append(result, s[match[0]:match[1]])
  1129  	})
  1130  	return result
  1131  }
  1132  
  1133  // FindAllStringIndex is the 'All' version of FindStringIndex; it returns a
  1134  // slice of all successive matches of the expression, as defined by the 'All'
  1135  // description in the package comment.
  1136  // A return value of nil indicates no match.
  1137  func (re *Regexp) FindAllStringIndex(s string, n int) [][]int {
  1138  	if n < 0 {
  1139  		n = len(s) + 1
  1140  	}
  1141  	var result [][]int
  1142  	re.allMatches(s, nil, n, func(match []int) {
  1143  		if result == nil {
  1144  			result = make([][]int, 0, startSize)
  1145  		}
  1146  		result = append(result, match[0:2])
  1147  	})
  1148  	return result
  1149  }
  1150  
  1151  // FindAllSubmatch is the 'All' version of FindSubmatch; it returns a slice
  1152  // of all successive matches of the expression, as defined by the 'All'
  1153  // description in the package comment.
  1154  // A return value of nil indicates no match.
  1155  func (re *Regexp) FindAllSubmatch(b []byte, n int) [][][]byte {
  1156  	if n < 0 {
  1157  		n = len(b) + 1
  1158  	}
  1159  	var result [][][]byte
  1160  	re.allMatches("", b, n, func(match []int) {
  1161  		if result == nil {
  1162  			result = make([][][]byte, 0, startSize)
  1163  		}
  1164  		slice := make([][]byte, len(match)/2)
  1165  		for j := range slice {
  1166  			if match[2*j] >= 0 {
  1167  				slice[j] = b[match[2*j]:match[2*j+1]:match[2*j+1]]
  1168  			}
  1169  		}
  1170  		result = append(result, slice)
  1171  	})
  1172  	return result
  1173  }
  1174  
  1175  // FindAllSubmatchIndex is the 'All' version of FindSubmatchIndex; it returns
  1176  // a slice of all successive matches of the expression, as defined by the
  1177  // 'All' description in the package comment.
  1178  // A return value of nil indicates no match.
  1179  func (re *Regexp) FindAllSubmatchIndex(b []byte, n int) [][]int {
  1180  	if n < 0 {
  1181  		n = len(b) + 1
  1182  	}
  1183  	var result [][]int
  1184  	re.allMatches("", b, n, func(match []int) {
  1185  		if result == nil {
  1186  			result = make([][]int, 0, startSize)
  1187  		}
  1188  		result = append(result, match)
  1189  	})
  1190  	return result
  1191  }
  1192  
  1193  // FindAllStringSubmatch is the 'All' version of FindStringSubmatch; it
  1194  // returns a slice of all successive matches of the expression, as defined by
  1195  // the 'All' description in the package comment.
  1196  // A return value of nil indicates no match.
  1197  func (re *Regexp) FindAllStringSubmatch(s string, n int) [][]string {
  1198  	if n < 0 {
  1199  		n = len(s) + 1
  1200  	}
  1201  	var result [][]string
  1202  	re.allMatches(s, nil, n, func(match []int) {
  1203  		if result == nil {
  1204  			result = make([][]string, 0, startSize)
  1205  		}
  1206  		slice := make([]string, len(match)/2)
  1207  		for j := range slice {
  1208  			if match[2*j] >= 0 {
  1209  				slice[j] = s[match[2*j]:match[2*j+1]]
  1210  			}
  1211  		}
  1212  		result = append(result, slice)
  1213  	})
  1214  	return result
  1215  }
  1216  
  1217  // FindAllStringSubmatchIndex is the 'All' version of
  1218  // FindStringSubmatchIndex; it returns a slice of all successive matches of
  1219  // the expression, as defined by the 'All' description in the package
  1220  // comment.
  1221  // A return value of nil indicates no match.
  1222  func (re *Regexp) FindAllStringSubmatchIndex(s string, n int) [][]int {
  1223  	if n < 0 {
  1224  		n = len(s) + 1
  1225  	}
  1226  	var result [][]int
  1227  	re.allMatches(s, nil, n, func(match []int) {
  1228  		if result == nil {
  1229  			result = make([][]int, 0, startSize)
  1230  		}
  1231  		result = append(result, match)
  1232  	})
  1233  	return result
  1234  }
  1235  
  1236  // Split slices s into substrings separated by the expression and returns a slice of
  1237  // the substrings between those expression matches.
  1238  //
  1239  // The slice returned by this method consists of all the substrings of s
  1240  // not contained in the slice returned by FindAllString. When called on an expression
  1241  // that contains no metacharacters, it is equivalent to strings.SplitN.
  1242  //
  1243  // Example:
  1244  //
  1245  //	s := regexp.MustCompile("a*").Split("abaabaccadaaae", 5)
  1246  //	// s: ["", "b", "b", "c", "cadaaae"]
  1247  //
  1248  // The count determines the number of substrings to return:
  1249  //
  1250  //	n > 0: at most n substrings; the last substring will be the unsplit remainder.
  1251  //	n == 0: the result is nil (zero substrings)
  1252  //	n < 0: all substrings
  1253  func (re *Regexp) Split(s string, n int) []string {
  1254  
  1255  	if n == 0 {
  1256  		return nil
  1257  	}
  1258  
  1259  	if len(re.expr) > 0 && len(s) == 0 {
  1260  		return []string{""}
  1261  	}
  1262  
  1263  	matches := re.FindAllStringIndex(s, n)
  1264  	strings := make([]string, 0, len(matches))
  1265  
  1266  	beg := 0
  1267  	end := 0
  1268  	for _, match := range matches {
  1269  		if n > 0 && len(strings) >= n-1 {
  1270  			break
  1271  		}
  1272  
  1273  		end = match[0]
  1274  		if match[1] != 0 {
  1275  			strings = append(strings, s[beg:end])
  1276  		}
  1277  		beg = match[1]
  1278  	}
  1279  
  1280  	if end != len(s) {
  1281  		strings = append(strings, s[beg:])
  1282  	}
  1283  
  1284  	return strings
  1285  }
  1286  

View as plain text