Source file src/runtime/mgcscavenge.go

     1  // Copyright 2019 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Scavenging free pages.
     6  //
     7  // This file implements scavenging (the release of physical pages backing mapped
     8  // memory) of free and unused pages in the heap as a way to deal with page-level
     9  // fragmentation and reduce the RSS of Go applications.
    10  //
    11  // Scavenging in Go happens on two fronts: there's the background
    12  // (asynchronous) scavenger and the heap-growth (synchronous) scavenger.
    13  //
    14  // The former happens on a goroutine much like the background sweeper which is
    15  // soft-capped at using scavengePercent of the mutator's time, based on
    16  // order-of-magnitude estimates of the costs of scavenging. The background
    17  // scavenger's primary goal is to bring the estimated heap RSS of the
    18  // application down to a goal.
    19  //
    20  // Before we consider what this looks like, we need to split the world into two
    21  // halves. One in which a memory limit is not set, and one in which it is.
    22  //
    23  // For the former, the goal is defined as:
    24  //   (retainExtraPercent+100) / 100 * (heapGoal / lastHeapGoal) * lastHeapInUse
    25  //
    26  // Essentially, we wish to have the application's RSS track the heap goal, but
    27  // the heap goal is defined in terms of bytes of objects, rather than pages like
    28  // RSS. As a result, we need to take into account for fragmentation internal to
    29  // spans. heapGoal / lastHeapGoal defines the ratio between the current heap goal
    30  // and the last heap goal, which tells us by how much the heap is growing and
    31  // shrinking. We estimate what the heap will grow to in terms of pages by taking
    32  // this ratio and multiplying it by heapInUse at the end of the last GC, which
    33  // allows us to account for this additional fragmentation. Note that this
    34  // procedure makes the assumption that the degree of fragmentation won't change
    35  // dramatically over the next GC cycle. Overestimating the amount of
    36  // fragmentation simply results in higher memory use, which will be accounted
    37  // for by the next pacing up date. Underestimating the fragmentation however
    38  // could lead to performance degradation. Handling this case is not within the
    39  // scope of the scavenger. Situations where the amount of fragmentation balloons
    40  // over the course of a single GC cycle should be considered pathologies,
    41  // flagged as bugs, and fixed appropriately.
    42  //
    43  // An additional factor of retainExtraPercent is added as a buffer to help ensure
    44  // that there's more unscavenged memory to allocate out of, since each allocation
    45  // out of scavenged memory incurs a potentially expensive page fault.
    46  //
    47  // If a memory limit is set, then we wish to pick a scavenge goal that maintains
    48  // that memory limit. For that, we look at total memory that has been committed
    49  // (memstats.mappedReady) and try to bring that down below the limit. In this case,
    50  // we want to give buffer space in the *opposite* direction. When the application
    51  // is close to the limit, we want to make sure we push harder to keep it under, so
    52  // if we target below the memory limit, we ensure that the background scavenger is
    53  // giving the situation the urgency it deserves.
    54  //
    55  // In this case, the goal is defined as:
    56  //    (100-reduceExtraPercent) / 100 * memoryLimit
    57  //
    58  // We compute both of these goals, and check whether either of them have been met.
    59  // The background scavenger continues operating as long as either one of the goals
    60  // has not been met.
    61  //
    62  // The goals are updated after each GC.
    63  //
    64  // The synchronous heap-growth scavenging happens whenever the heap grows in
    65  // size, for some definition of heap-growth. The intuition behind this is that
    66  // the application had to grow the heap because existing fragments were
    67  // not sufficiently large to satisfy a page-level memory allocation, so we
    68  // scavenge those fragments eagerly to offset the growth in RSS that results.
    69  
    70  package runtime
    71  
    72  import (
    73  	"internal/goos"
    74  	"runtime/internal/atomic"
    75  	"runtime/internal/sys"
    76  	"unsafe"
    77  )
    78  
    79  const (
    80  	// The background scavenger is paced according to these parameters.
    81  	//
    82  	// scavengePercent represents the portion of mutator time we're willing
    83  	// to spend on scavenging in percent.
    84  	scavengePercent = 1 // 1%
    85  
    86  	// retainExtraPercent represents the amount of memory over the heap goal
    87  	// that the scavenger should keep as a buffer space for the allocator.
    88  	// This constant is used when we do not have a memory limit set.
    89  	//
    90  	// The purpose of maintaining this overhead is to have a greater pool of
    91  	// unscavenged memory available for allocation (since using scavenged memory
    92  	// incurs an additional cost), to account for heap fragmentation and
    93  	// the ever-changing layout of the heap.
    94  	retainExtraPercent = 10
    95  
    96  	// reduceExtraPercent represents the amount of memory under the limit
    97  	// that the scavenger should target. For example, 5 means we target 95%
    98  	// of the limit.
    99  	//
   100  	// The purpose of shooting lower than the limit is to ensure that, once
   101  	// close to the limit, the scavenger is working hard to maintain it. If
   102  	// we have a memory limit set but are far away from it, there's no harm
   103  	// in leaving up to 100-retainExtraPercent live, and it's more efficient
   104  	// anyway, for the same reasons that retainExtraPercent exists.
   105  	reduceExtraPercent = 5
   106  
   107  	// maxPagesPerPhysPage is the maximum number of supported runtime pages per
   108  	// physical page, based on maxPhysPageSize.
   109  	maxPagesPerPhysPage = maxPhysPageSize / pageSize
   110  
   111  	// scavengeCostRatio is the approximate ratio between the costs of using previously
   112  	// scavenged memory and scavenging memory.
   113  	//
   114  	// For most systems the cost of scavenging greatly outweighs the costs
   115  	// associated with using scavenged memory, making this constant 0. On other systems
   116  	// (especially ones where "sysUsed" is not just a no-op) this cost is non-trivial.
   117  	//
   118  	// This ratio is used as part of multiplicative factor to help the scavenger account
   119  	// for the additional costs of using scavenged memory in its pacing.
   120  	scavengeCostRatio = 0.7 * (goos.IsDarwin + goos.IsIos)
   121  )
   122  
   123  // heapRetained returns an estimate of the current heap RSS.
   124  func heapRetained() uint64 {
   125  	return gcController.heapInUse.load() + gcController.heapFree.load()
   126  }
   127  
   128  // gcPaceScavenger updates the scavenger's pacing, particularly
   129  // its rate and RSS goal. For this, it requires the current heapGoal,
   130  // and the heapGoal for the previous GC cycle.
   131  //
   132  // The RSS goal is based on the current heap goal with a small overhead
   133  // to accommodate non-determinism in the allocator.
   134  //
   135  // The pacing is based on scavengePageRate, which applies to both regular and
   136  // huge pages. See that constant for more information.
   137  //
   138  // Must be called whenever GC pacing is updated.
   139  //
   140  // mheap_.lock must be held or the world must be stopped.
   141  func gcPaceScavenger(memoryLimit int64, heapGoal, lastHeapGoal uint64) {
   142  	assertWorldStoppedOrLockHeld(&mheap_.lock)
   143  
   144  	// As described at the top of this file, there are two scavenge goals here: one
   145  	// for gcPercent and one for memoryLimit. Let's handle the latter first because
   146  	// it's simpler.
   147  
   148  	// We want to target retaining (100-reduceExtraPercent)% of the heap.
   149  	memoryLimitGoal := uint64(float64(memoryLimit) * (100.0 - reduceExtraPercent))
   150  
   151  	// mappedReady is comparable to memoryLimit, and represents how much total memory
   152  	// the Go runtime has committed now (estimated).
   153  	mappedReady := gcController.mappedReady.Load()
   154  
   155  	// If we're below the goal already indicate that we don't need the background
   156  	// scavenger for the memory limit. This may seems worrisome at first, but note
   157  	// that the allocator will assist the background scavenger in the face of a memory
   158  	// limit, so we'll be safe even if we stop the scavenger when we shouldn't have.
   159  	if mappedReady <= memoryLimitGoal {
   160  		scavenge.memoryLimitGoal.Store(^uint64(0))
   161  	} else {
   162  		scavenge.memoryLimitGoal.Store(memoryLimitGoal)
   163  	}
   164  
   165  	// Now handle the gcPercent goal.
   166  
   167  	// If we're called before the first GC completed, disable scavenging.
   168  	// We never scavenge before the 2nd GC cycle anyway (we don't have enough
   169  	// information about the heap yet) so this is fine, and avoids a fault
   170  	// or garbage data later.
   171  	if lastHeapGoal == 0 {
   172  		scavenge.gcPercentGoal.Store(^uint64(0))
   173  		return
   174  	}
   175  	// Compute our scavenging goal.
   176  	goalRatio := float64(heapGoal) / float64(lastHeapGoal)
   177  	gcPercentGoal := uint64(float64(memstats.lastHeapInUse) * goalRatio)
   178  	// Add retainExtraPercent overhead to retainedGoal. This calculation
   179  	// looks strange but the purpose is to arrive at an integer division
   180  	// (e.g. if retainExtraPercent = 12.5, then we get a divisor of 8)
   181  	// that also avoids the overflow from a multiplication.
   182  	gcPercentGoal += gcPercentGoal / (1.0 / (retainExtraPercent / 100.0))
   183  	// Align it to a physical page boundary to make the following calculations
   184  	// a bit more exact.
   185  	gcPercentGoal = (gcPercentGoal + uint64(physPageSize) - 1) &^ (uint64(physPageSize) - 1)
   186  
   187  	// Represents where we are now in the heap's contribution to RSS in bytes.
   188  	//
   189  	// Guaranteed to always be a multiple of physPageSize on systems where
   190  	// physPageSize <= pageSize since we map new heap memory at a size larger than
   191  	// any physPageSize and released memory in multiples of the physPageSize.
   192  	//
   193  	// However, certain functions recategorize heap memory as other stats (e.g.
   194  	// stacks) and this happens in multiples of pageSize, so on systems
   195  	// where physPageSize > pageSize the calculations below will not be exact.
   196  	// Generally this is OK since we'll be off by at most one regular
   197  	// physical page.
   198  	heapRetainedNow := heapRetained()
   199  
   200  	// If we're already below our goal, or within one page of our goal, then indicate
   201  	// that we don't need the background scavenger for maintaining a memory overhead
   202  	// proportional to the heap goal.
   203  	if heapRetainedNow <= gcPercentGoal || heapRetainedNow-gcPercentGoal < uint64(physPageSize) {
   204  		scavenge.gcPercentGoal.Store(^uint64(0))
   205  	} else {
   206  		scavenge.gcPercentGoal.Store(gcPercentGoal)
   207  	}
   208  }
   209  
   210  var scavenge struct {
   211  	// gcPercentGoal is the amount of retained heap memory (measured by
   212  	// heapRetained) that the runtime will try to maintain by returning
   213  	// memory to the OS. This goal is derived from gcController.gcPercent
   214  	// by choosing to retain enough memory to allocate heap memory up to
   215  	// the heap goal.
   216  	gcPercentGoal atomic.Uint64
   217  
   218  	// memoryLimitGoal is the amount of memory retained by the runtime (
   219  	// measured by gcController.mappedReady) that the runtime will try to
   220  	// maintain by returning memory to the OS. This goal is derived from
   221  	// gcController.memoryLimit by choosing to target the memory limit or
   222  	// some lower target to keep the scavenger working.
   223  	memoryLimitGoal atomic.Uint64
   224  
   225  	// assistTime is the time spent by the allocator scavenging in the last GC cycle.
   226  	//
   227  	// This is reset once a GC cycle ends.
   228  	assistTime atomic.Int64
   229  
   230  	// backgroundTime is the time spent by the background scavenger in the last GC cycle.
   231  	//
   232  	// This is reset once a GC cycle ends.
   233  	backgroundTime atomic.Int64
   234  }
   235  
   236  const (
   237  	// It doesn't really matter what value we start at, but we can't be zero, because
   238  	// that'll cause divide-by-zero issues. Pick something conservative which we'll
   239  	// also use as a fallback.
   240  	startingScavSleepRatio = 0.001
   241  
   242  	// Spend at least 1 ms scavenging, otherwise the corresponding
   243  	// sleep time to maintain our desired utilization is too low to
   244  	// be reliable.
   245  	minScavWorkTime = 1e6
   246  )
   247  
   248  // Sleep/wait state of the background scavenger.
   249  var scavenger scavengerState
   250  
   251  type scavengerState struct {
   252  	// lock protects all fields below.
   253  	lock mutex
   254  
   255  	// g is the goroutine the scavenger is bound to.
   256  	g *g
   257  
   258  	// parked is whether or not the scavenger is parked.
   259  	parked bool
   260  
   261  	// timer is the timer used for the scavenger to sleep.
   262  	timer *timer
   263  
   264  	// sysmonWake signals to sysmon that it should wake the scavenger.
   265  	sysmonWake atomic.Uint32
   266  
   267  	// targetCPUFraction is the target CPU overhead for the scavenger.
   268  	targetCPUFraction float64
   269  
   270  	// sleepRatio is the ratio of time spent doing scavenging work to
   271  	// time spent sleeping. This is used to decide how long the scavenger
   272  	// should sleep for in between batches of work. It is set by
   273  	// critSleepController in order to maintain a CPU overhead of
   274  	// targetCPUFraction.
   275  	//
   276  	// Lower means more sleep, higher means more aggressive scavenging.
   277  	sleepRatio float64
   278  
   279  	// sleepController controls sleepRatio.
   280  	//
   281  	// See sleepRatio for more details.
   282  	sleepController piController
   283  
   284  	// cooldown is the time left in nanoseconds during which we avoid
   285  	// using the controller and we hold sleepRatio at a conservative
   286  	// value. Used if the controller's assumptions fail to hold.
   287  	controllerCooldown int64
   288  
   289  	// printControllerReset instructs printScavTrace to signal that
   290  	// the controller was reset.
   291  	printControllerReset bool
   292  
   293  	// sleepStub is a stub used for testing to avoid actually having
   294  	// the scavenger sleep.
   295  	//
   296  	// Unlike the other stubs, this is not populated if left nil
   297  	// Instead, it is called when non-nil because any valid implementation
   298  	// of this function basically requires closing over this scavenger
   299  	// state, and allocating a closure is not allowed in the runtime as
   300  	// a matter of policy.
   301  	sleepStub func(n int64) int64
   302  
   303  	// scavenge is a function that scavenges n bytes of memory.
   304  	// Returns how many bytes of memory it actually scavenged, as
   305  	// well as the time it took in nanoseconds. Usually mheap.pages.scavenge
   306  	// with nanotime called around it, but stubbed out for testing.
   307  	// Like mheap.pages.scavenge, if it scavenges less than n bytes of
   308  	// memory, the caller may assume the heap is exhausted of scavengable
   309  	// memory for now.
   310  	//
   311  	// If this is nil, it is populated with the real thing in init.
   312  	scavenge func(n uintptr) (uintptr, int64)
   313  
   314  	// shouldStop is a callback called in the work loop and provides a
   315  	// point that can force the scavenger to stop early, for example because
   316  	// the scavenge policy dictates too much has been scavenged already.
   317  	//
   318  	// If this is nil, it is populated with the real thing in init.
   319  	shouldStop func() bool
   320  
   321  	// gomaxprocs returns the current value of gomaxprocs. Stub for testing.
   322  	//
   323  	// If this is nil, it is populated with the real thing in init.
   324  	gomaxprocs func() int32
   325  }
   326  
   327  // init initializes a scavenger state and wires to the current G.
   328  //
   329  // Must be called from a regular goroutine that can allocate.
   330  func (s *scavengerState) init() {
   331  	if s.g != nil {
   332  		throw("scavenger state is already wired")
   333  	}
   334  	lockInit(&s.lock, lockRankScavenge)
   335  	s.g = getg()
   336  
   337  	s.timer = new(timer)
   338  	s.timer.arg = s
   339  	s.timer.f = func(s any, _ uintptr) {
   340  		s.(*scavengerState).wake()
   341  	}
   342  
   343  	// input: fraction of CPU time actually used.
   344  	// setpoint: ideal CPU fraction.
   345  	// output: ratio of time worked to time slept (determines sleep time).
   346  	//
   347  	// The output of this controller is somewhat indirect to what we actually
   348  	// want to achieve: how much time to sleep for. The reason for this definition
   349  	// is to ensure that the controller's outputs have a direct relationship with
   350  	// its inputs (as opposed to an inverse relationship), making it somewhat
   351  	// easier to reason about for tuning purposes.
   352  	s.sleepController = piController{
   353  		// Tuned loosely via Ziegler-Nichols process.
   354  		kp: 0.3375,
   355  		ti: 3.2e6,
   356  		tt: 1e9, // 1 second reset time.
   357  
   358  		// These ranges seem wide, but we want to give the controller plenty of
   359  		// room to hunt for the optimal value.
   360  		min: 0.001,  // 1:1000
   361  		max: 1000.0, // 1000:1
   362  	}
   363  	s.sleepRatio = startingScavSleepRatio
   364  
   365  	// Install real functions if stubs aren't present.
   366  	if s.scavenge == nil {
   367  		s.scavenge = func(n uintptr) (uintptr, int64) {
   368  			start := nanotime()
   369  			r := mheap_.pages.scavenge(n, nil)
   370  			end := nanotime()
   371  			if start >= end {
   372  				return r, 0
   373  			}
   374  			scavenge.backgroundTime.Add(end - start)
   375  			return r, end - start
   376  		}
   377  	}
   378  	if s.shouldStop == nil {
   379  		s.shouldStop = func() bool {
   380  			// If background scavenging is disabled or if there's no work to do just stop.
   381  			return heapRetained() <= scavenge.gcPercentGoal.Load() &&
   382  				(!go119MemoryLimitSupport ||
   383  					gcController.mappedReady.Load() <= scavenge.memoryLimitGoal.Load())
   384  		}
   385  	}
   386  	if s.gomaxprocs == nil {
   387  		s.gomaxprocs = func() int32 {
   388  			return gomaxprocs
   389  		}
   390  	}
   391  }
   392  
   393  // park parks the scavenger goroutine.
   394  func (s *scavengerState) park() {
   395  	lock(&s.lock)
   396  	if getg() != s.g {
   397  		throw("tried to park scavenger from another goroutine")
   398  	}
   399  	s.parked = true
   400  	goparkunlock(&s.lock, waitReasonGCScavengeWait, traceEvGoBlock, 2)
   401  }
   402  
   403  // ready signals to sysmon that the scavenger should be awoken.
   404  func (s *scavengerState) ready() {
   405  	s.sysmonWake.Store(1)
   406  }
   407  
   408  // wake immediately unparks the scavenger if necessary.
   409  //
   410  // Safe to run without a P.
   411  func (s *scavengerState) wake() {
   412  	lock(&s.lock)
   413  	if s.parked {
   414  		// Unset sysmonWake, since the scavenger is now being awoken.
   415  		s.sysmonWake.Store(0)
   416  
   417  		// s.parked is unset to prevent a double wake-up.
   418  		s.parked = false
   419  
   420  		// Ready the goroutine by injecting it. We use injectglist instead
   421  		// of ready or goready in order to allow us to run this function
   422  		// without a P. injectglist also avoids placing the goroutine in
   423  		// the current P's runnext slot, which is desirable to prevent
   424  		// the scavenger from interfering with user goroutine scheduling
   425  		// too much.
   426  		var list gList
   427  		list.push(s.g)
   428  		injectglist(&list)
   429  	}
   430  	unlock(&s.lock)
   431  }
   432  
   433  // sleep puts the scavenger to sleep based on the amount of time that it worked
   434  // in nanoseconds.
   435  //
   436  // Note that this function should only be called by the scavenger.
   437  //
   438  // The scavenger may be woken up earlier by a pacing change, and it may not go
   439  // to sleep at all if there's a pending pacing change.
   440  func (s *scavengerState) sleep(worked float64) {
   441  	lock(&s.lock)
   442  	if getg() != s.g {
   443  		throw("tried to sleep scavenger from another goroutine")
   444  	}
   445  
   446  	if worked < minScavWorkTime {
   447  		// This means there wasn't enough work to actually fill up minScavWorkTime.
   448  		// That's fine; we shouldn't try to do anything with this information
   449  		// because it's going result in a short enough sleep request that things
   450  		// will get messy. Just assume we did at least this much work.
   451  		// All this means is that we'll sleep longer than we otherwise would have.
   452  		worked = minScavWorkTime
   453  	}
   454  
   455  	// Multiply the critical time by 1 + the ratio of the costs of using
   456  	// scavenged memory vs. scavenging memory. This forces us to pay down
   457  	// the cost of reusing this memory eagerly by sleeping for a longer period
   458  	// of time and scavenging less frequently. More concretely, we avoid situations
   459  	// where we end up scavenging so often that we hurt allocation performance
   460  	// because of the additional overheads of using scavenged memory.
   461  	worked *= 1 + scavengeCostRatio
   462  
   463  	// sleepTime is the amount of time we're going to sleep, based on the amount
   464  	// of time we worked, and the sleepRatio.
   465  	sleepTime := int64(worked / s.sleepRatio)
   466  
   467  	var slept int64
   468  	if s.sleepStub == nil {
   469  		// Set the timer.
   470  		//
   471  		// This must happen here instead of inside gopark
   472  		// because we can't close over any variables without
   473  		// failing escape analysis.
   474  		start := nanotime()
   475  		resetTimer(s.timer, start+sleepTime)
   476  
   477  		// Mark ourselves as asleep and go to sleep.
   478  		s.parked = true
   479  		goparkunlock(&s.lock, waitReasonSleep, traceEvGoSleep, 2)
   480  
   481  		// How long we actually slept for.
   482  		slept = nanotime() - start
   483  
   484  		lock(&s.lock)
   485  		// Stop the timer here because s.wake is unable to do it for us.
   486  		// We don't really care if we succeed in stopping the timer. One
   487  		// reason we might fail is that we've already woken up, but the timer
   488  		// might be in the process of firing on some other P; essentially we're
   489  		// racing with it. That's totally OK. Double wake-ups are perfectly safe.
   490  		stopTimer(s.timer)
   491  		unlock(&s.lock)
   492  	} else {
   493  		unlock(&s.lock)
   494  		slept = s.sleepStub(sleepTime)
   495  	}
   496  
   497  	// Stop here if we're cooling down from the controller.
   498  	if s.controllerCooldown > 0 {
   499  		// worked and slept aren't exact measures of time, but it's OK to be a bit
   500  		// sloppy here. We're just hoping we're avoiding some transient bad behavior.
   501  		t := slept + int64(worked)
   502  		if t > s.controllerCooldown {
   503  			s.controllerCooldown = 0
   504  		} else {
   505  			s.controllerCooldown -= t
   506  		}
   507  		return
   508  	}
   509  
   510  	// idealFraction is the ideal % of overall application CPU time that we
   511  	// spend scavenging.
   512  	idealFraction := float64(scavengePercent) / 100.0
   513  
   514  	// Calculate the CPU time spent.
   515  	//
   516  	// This may be slightly inaccurate with respect to GOMAXPROCS, but we're
   517  	// recomputing this often enough relative to GOMAXPROCS changes in general
   518  	// (it only changes when the world is stopped, and not during a GC) that
   519  	// that small inaccuracy is in the noise.
   520  	cpuFraction := worked / ((float64(slept) + worked) * float64(s.gomaxprocs()))
   521  
   522  	// Update the critSleepRatio, adjusting until we reach our ideal fraction.
   523  	var ok bool
   524  	s.sleepRatio, ok = s.sleepController.next(cpuFraction, idealFraction, float64(slept)+worked)
   525  	if !ok {
   526  		// The core assumption of the controller, that we can get a proportional
   527  		// response, broke down. This may be transient, so temporarily switch to
   528  		// sleeping a fixed, conservative amount.
   529  		s.sleepRatio = startingScavSleepRatio
   530  		s.controllerCooldown = 5e9 // 5 seconds.
   531  
   532  		// Signal the scav trace printer to output this.
   533  		s.controllerFailed()
   534  	}
   535  }
   536  
   537  // controllerFailed indicates that the scavenger's scheduling
   538  // controller failed.
   539  func (s *scavengerState) controllerFailed() {
   540  	lock(&s.lock)
   541  	s.printControllerReset = true
   542  	unlock(&s.lock)
   543  }
   544  
   545  // run is the body of the main scavenging loop.
   546  //
   547  // Returns the number of bytes released and the estimated time spent
   548  // releasing those bytes.
   549  //
   550  // Must be run on the scavenger goroutine.
   551  func (s *scavengerState) run() (released uintptr, worked float64) {
   552  	lock(&s.lock)
   553  	if getg() != s.g {
   554  		throw("tried to run scavenger from another goroutine")
   555  	}
   556  	unlock(&s.lock)
   557  
   558  	for worked < minScavWorkTime {
   559  		// If something from outside tells us to stop early, stop.
   560  		if s.shouldStop() {
   561  			break
   562  		}
   563  
   564  		// scavengeQuantum is the amount of memory we try to scavenge
   565  		// in one go. A smaller value means the scavenger is more responsive
   566  		// to the scheduler in case of e.g. preemption. A larger value means
   567  		// that the overheads of scavenging are better amortized, so better
   568  		// scavenging throughput.
   569  		//
   570  		// The current value is chosen assuming a cost of ~10µs/physical page
   571  		// (this is somewhat pessimistic), which implies a worst-case latency of
   572  		// about 160µs for 4 KiB physical pages. The current value is biased
   573  		// toward latency over throughput.
   574  		const scavengeQuantum = 64 << 10
   575  
   576  		// Accumulate the amount of time spent scavenging.
   577  		r, duration := s.scavenge(scavengeQuantum)
   578  
   579  		// On some platforms we may see end >= start if the time it takes to scavenge
   580  		// memory is less than the minimum granularity of its clock (e.g. Windows) or
   581  		// due to clock bugs.
   582  		//
   583  		// In this case, just assume scavenging takes 10 µs per regular physical page
   584  		// (determined empirically), and conservatively ignore the impact of huge pages
   585  		// on timing.
   586  		const approxWorkedNSPerPhysicalPage = 10e3
   587  		if duration == 0 {
   588  			worked += approxWorkedNSPerPhysicalPage * float64(r/physPageSize)
   589  		} else {
   590  			// TODO(mknyszek): If duration is small compared to worked, it could be
   591  			// rounded down to zero. Probably not a problem in practice because the
   592  			// values are all within a few orders of magnitude of each other but maybe
   593  			// worth worrying about.
   594  			worked += float64(duration)
   595  		}
   596  		released += r
   597  
   598  		// scavenge does not return until it either finds the requisite amount of
   599  		// memory to scavenge, or exhausts the heap. If we haven't found enough
   600  		// to scavenge, then the heap must be exhausted.
   601  		if r < scavengeQuantum {
   602  			break
   603  		}
   604  		// When using fake time just do one loop.
   605  		if faketime != 0 {
   606  			break
   607  		}
   608  	}
   609  	if released > 0 && released < physPageSize {
   610  		// If this happens, it means that we may have attempted to release part
   611  		// of a physical page, but the likely effect of that is that it released
   612  		// the whole physical page, some of which may have still been in-use.
   613  		// This could lead to memory corruption. Throw.
   614  		throw("released less than one physical page of memory")
   615  	}
   616  	return
   617  }
   618  
   619  // Background scavenger.
   620  //
   621  // The background scavenger maintains the RSS of the application below
   622  // the line described by the proportional scavenging statistics in
   623  // the mheap struct.
   624  func bgscavenge(c chan int) {
   625  	scavenger.init()
   626  
   627  	c <- 1
   628  	scavenger.park()
   629  
   630  	for {
   631  		released, workTime := scavenger.run()
   632  		if released == 0 {
   633  			scavenger.park()
   634  			continue
   635  		}
   636  		atomic.Xadduintptr(&mheap_.pages.scav.released, released)
   637  		scavenger.sleep(workTime)
   638  	}
   639  }
   640  
   641  // scavenge scavenges nbytes worth of free pages, starting with the
   642  // highest address first. Successive calls continue from where it left
   643  // off until the heap is exhausted. Call scavengeStartGen to bring it
   644  // back to the top of the heap.
   645  //
   646  // Returns the amount of memory scavenged in bytes.
   647  //
   648  // scavenge always tries to scavenge nbytes worth of memory, and will
   649  // only fail to do so if the heap is exhausted for now.
   650  func (p *pageAlloc) scavenge(nbytes uintptr, shouldStop func() bool) uintptr {
   651  	released := uintptr(0)
   652  	for released < nbytes {
   653  		ci, pageIdx := p.scav.index.find()
   654  		if ci == 0 {
   655  			break
   656  		}
   657  		systemstack(func() {
   658  			released += p.scavengeOne(ci, pageIdx, nbytes-released)
   659  		})
   660  		if shouldStop != nil && shouldStop() {
   661  			break
   662  		}
   663  	}
   664  	return released
   665  }
   666  
   667  // printScavTrace prints a scavenge trace line to standard error.
   668  //
   669  // released should be the amount of memory released since the last time this
   670  // was called, and forced indicates whether the scavenge was forced by the
   671  // application.
   672  //
   673  // scavenger.lock must be held.
   674  func printScavTrace(released uintptr, forced bool) {
   675  	assertLockHeld(&scavenger.lock)
   676  
   677  	printlock()
   678  	print("scav ",
   679  		released>>10, " KiB work, ",
   680  		gcController.heapReleased.load()>>10, " KiB total, ",
   681  		(gcController.heapInUse.load()*100)/heapRetained(), "% util",
   682  	)
   683  	if forced {
   684  		print(" (forced)")
   685  	} else if scavenger.printControllerReset {
   686  		print(" [controller reset]")
   687  		scavenger.printControllerReset = false
   688  	}
   689  	println()
   690  	printunlock()
   691  }
   692  
   693  // scavengeOne walks over the chunk at chunk index ci and searches for
   694  // a contiguous run of pages to scavenge. It will try to scavenge
   695  // at most max bytes at once, but may scavenge more to avoid
   696  // breaking huge pages. Once it scavenges some memory it returns
   697  // how much it scavenged in bytes.
   698  //
   699  // searchIdx is the page index to start searching from in ci.
   700  //
   701  // Returns the number of bytes scavenged.
   702  //
   703  // Must run on the systemstack because it acquires p.mheapLock.
   704  //
   705  //go:systemstack
   706  func (p *pageAlloc) scavengeOne(ci chunkIdx, searchIdx uint, max uintptr) uintptr {
   707  	// Calculate the maximum number of pages to scavenge.
   708  	//
   709  	// This should be alignUp(max, pageSize) / pageSize but max can and will
   710  	// be ^uintptr(0), so we need to be very careful not to overflow here.
   711  	// Rather than use alignUp, calculate the number of pages rounded down
   712  	// first, then add back one if necessary.
   713  	maxPages := max / pageSize
   714  	if max%pageSize != 0 {
   715  		maxPages++
   716  	}
   717  
   718  	// Calculate the minimum number of pages we can scavenge.
   719  	//
   720  	// Because we can only scavenge whole physical pages, we must
   721  	// ensure that we scavenge at least minPages each time, aligned
   722  	// to minPages*pageSize.
   723  	minPages := physPageSize / pageSize
   724  	if minPages < 1 {
   725  		minPages = 1
   726  	}
   727  
   728  	lock(p.mheapLock)
   729  	if p.summary[len(p.summary)-1][ci].max() >= uint(minPages) {
   730  		// We only bother looking for a candidate if there at least
   731  		// minPages free pages at all.
   732  		base, npages := p.chunkOf(ci).findScavengeCandidate(searchIdx, minPages, maxPages)
   733  
   734  		// If we found something, scavenge it and return!
   735  		if npages != 0 {
   736  			// Compute the full address for the start of the range.
   737  			addr := chunkBase(ci) + uintptr(base)*pageSize
   738  
   739  			// Mark the range we're about to scavenge as allocated, because
   740  			// we don't want any allocating goroutines to grab it while
   741  			// the scavenging is in progress.
   742  			if scav := p.allocRange(addr, uintptr(npages)); scav != 0 {
   743  				throw("double scavenge")
   744  			}
   745  
   746  			// With that done, it's safe to unlock.
   747  			unlock(p.mheapLock)
   748  
   749  			if !p.test {
   750  				pageTraceScav(getg().m.p.ptr(), 0, addr, uintptr(npages))
   751  
   752  				// Only perform the actual scavenging if we're not in a test.
   753  				// It's dangerous to do so otherwise.
   754  				sysUnused(unsafe.Pointer(addr), uintptr(npages)*pageSize)
   755  
   756  				// Update global accounting only when not in test, otherwise
   757  				// the runtime's accounting will be wrong.
   758  				nbytes := int64(npages) * pageSize
   759  				gcController.heapReleased.add(nbytes)
   760  				gcController.heapFree.add(-nbytes)
   761  
   762  				stats := memstats.heapStats.acquire()
   763  				atomic.Xaddint64(&stats.committed, -nbytes)
   764  				atomic.Xaddint64(&stats.released, nbytes)
   765  				memstats.heapStats.release()
   766  			}
   767  
   768  			// Relock the heap, because now we need to make these pages
   769  			// available allocation. Free them back to the page allocator.
   770  			lock(p.mheapLock)
   771  			p.free(addr, uintptr(npages), true)
   772  
   773  			// Mark the range as scavenged.
   774  			p.chunkOf(ci).scavenged.setRange(base, npages)
   775  			unlock(p.mheapLock)
   776  
   777  			return uintptr(npages) * pageSize
   778  		}
   779  	}
   780  	// Mark this chunk as having no free pages.
   781  	p.scav.index.clear(ci)
   782  	unlock(p.mheapLock)
   783  
   784  	return 0
   785  }
   786  
   787  // fillAligned returns x but with all zeroes in m-aligned
   788  // groups of m bits set to 1 if any bit in the group is non-zero.
   789  //
   790  // For example, fillAligned(0x0100a3, 8) == 0xff00ff.
   791  //
   792  // Note that if m == 1, this is a no-op.
   793  //
   794  // m must be a power of 2 <= maxPagesPerPhysPage.
   795  func fillAligned(x uint64, m uint) uint64 {
   796  	apply := func(x uint64, c uint64) uint64 {
   797  		// The technique used it here is derived from
   798  		// https://graphics.stanford.edu/~seander/bithacks.html#ZeroInWord
   799  		// and extended for more than just bytes (like nibbles
   800  		// and uint16s) by using an appropriate constant.
   801  		//
   802  		// To summarize the technique, quoting from that page:
   803  		// "[It] works by first zeroing the high bits of the [8]
   804  		// bytes in the word. Subsequently, it adds a number that
   805  		// will result in an overflow to the high bit of a byte if
   806  		// any of the low bits were initially set. Next the high
   807  		// bits of the original word are ORed with these values;
   808  		// thus, the high bit of a byte is set iff any bit in the
   809  		// byte was set. Finally, we determine if any of these high
   810  		// bits are zero by ORing with ones everywhere except the
   811  		// high bits and inverting the result."
   812  		return ^((((x & c) + c) | x) | c)
   813  	}
   814  	// Transform x to contain a 1 bit at the top of each m-aligned
   815  	// group of m zero bits.
   816  	switch m {
   817  	case 1:
   818  		return x
   819  	case 2:
   820  		x = apply(x, 0x5555555555555555)
   821  	case 4:
   822  		x = apply(x, 0x7777777777777777)
   823  	case 8:
   824  		x = apply(x, 0x7f7f7f7f7f7f7f7f)
   825  	case 16:
   826  		x = apply(x, 0x7fff7fff7fff7fff)
   827  	case 32:
   828  		x = apply(x, 0x7fffffff7fffffff)
   829  	case 64: // == maxPagesPerPhysPage
   830  		x = apply(x, 0x7fffffffffffffff)
   831  	default:
   832  		throw("bad m value")
   833  	}
   834  	// Now, the top bit of each m-aligned group in x is set
   835  	// that group was all zero in the original x.
   836  
   837  	// From each group of m bits subtract 1.
   838  	// Because we know only the top bits of each
   839  	// m-aligned group are set, we know this will
   840  	// set each group to have all the bits set except
   841  	// the top bit, so just OR with the original
   842  	// result to set all the bits.
   843  	return ^((x - (x >> (m - 1))) | x)
   844  }
   845  
   846  // findScavengeCandidate returns a start index and a size for this pallocData
   847  // segment which represents a contiguous region of free and unscavenged memory.
   848  //
   849  // searchIdx indicates the page index within this chunk to start the search, but
   850  // note that findScavengeCandidate searches backwards through the pallocData. As a
   851  // a result, it will return the highest scavenge candidate in address order.
   852  //
   853  // min indicates a hard minimum size and alignment for runs of pages. That is,
   854  // findScavengeCandidate will not return a region smaller than min pages in size,
   855  // or that is min pages or greater in size but not aligned to min. min must be
   856  // a non-zero power of 2 <= maxPagesPerPhysPage.
   857  //
   858  // max is a hint for how big of a region is desired. If max >= pallocChunkPages, then
   859  // findScavengeCandidate effectively returns entire free and unscavenged regions.
   860  // If max < pallocChunkPages, it may truncate the returned region such that size is
   861  // max. However, findScavengeCandidate may still return a larger region if, for
   862  // example, it chooses to preserve huge pages, or if max is not aligned to min (it
   863  // will round up). That is, even if max is small, the returned size is not guaranteed
   864  // to be equal to max. max is allowed to be less than min, in which case it is as if
   865  // max == min.
   866  func (m *pallocData) findScavengeCandidate(searchIdx uint, min, max uintptr) (uint, uint) {
   867  	if min&(min-1) != 0 || min == 0 {
   868  		print("runtime: min = ", min, "\n")
   869  		throw("min must be a non-zero power of 2")
   870  	} else if min > maxPagesPerPhysPage {
   871  		print("runtime: min = ", min, "\n")
   872  		throw("min too large")
   873  	}
   874  	// max may not be min-aligned, so we might accidentally truncate to
   875  	// a max value which causes us to return a non-min-aligned value.
   876  	// To prevent this, align max up to a multiple of min (which is always
   877  	// a power of 2). This also prevents max from ever being less than
   878  	// min, unless it's zero, so handle that explicitly.
   879  	if max == 0 {
   880  		max = min
   881  	} else {
   882  		max = alignUp(max, min)
   883  	}
   884  
   885  	i := int(searchIdx / 64)
   886  	// Start by quickly skipping over blocks of non-free or scavenged pages.
   887  	for ; i >= 0; i-- {
   888  		// 1s are scavenged OR non-free => 0s are unscavenged AND free
   889  		x := fillAligned(m.scavenged[i]|m.pallocBits[i], uint(min))
   890  		if x != ^uint64(0) {
   891  			break
   892  		}
   893  	}
   894  	if i < 0 {
   895  		// Failed to find any free/unscavenged pages.
   896  		return 0, 0
   897  	}
   898  	// We have something in the 64-bit chunk at i, but it could
   899  	// extend further. Loop until we find the extent of it.
   900  
   901  	// 1s are scavenged OR non-free => 0s are unscavenged AND free
   902  	x := fillAligned(m.scavenged[i]|m.pallocBits[i], uint(min))
   903  	z1 := uint(sys.LeadingZeros64(^x))
   904  	run, end := uint(0), uint(i)*64+(64-z1)
   905  	if x<<z1 != 0 {
   906  		// After shifting out z1 bits, we still have 1s,
   907  		// so the run ends inside this word.
   908  		run = uint(sys.LeadingZeros64(x << z1))
   909  	} else {
   910  		// After shifting out z1 bits, we have no more 1s.
   911  		// This means the run extends to the bottom of the
   912  		// word so it may extend into further words.
   913  		run = 64 - z1
   914  		for j := i - 1; j >= 0; j-- {
   915  			x := fillAligned(m.scavenged[j]|m.pallocBits[j], uint(min))
   916  			run += uint(sys.LeadingZeros64(x))
   917  			if x != 0 {
   918  				// The run stopped in this word.
   919  				break
   920  			}
   921  		}
   922  	}
   923  
   924  	// Split the run we found if it's larger than max but hold on to
   925  	// our original length, since we may need it later.
   926  	size := run
   927  	if size > uint(max) {
   928  		size = uint(max)
   929  	}
   930  	start := end - size
   931  
   932  	// Each huge page is guaranteed to fit in a single palloc chunk.
   933  	//
   934  	// TODO(mknyszek): Support larger huge page sizes.
   935  	// TODO(mknyszek): Consider taking pages-per-huge-page as a parameter
   936  	// so we can write tests for this.
   937  	if physHugePageSize > pageSize && physHugePageSize > physPageSize {
   938  		// We have huge pages, so let's ensure we don't break one by scavenging
   939  		// over a huge page boundary. If the range [start, start+size) overlaps with
   940  		// a free-and-unscavenged huge page, we want to grow the region we scavenge
   941  		// to include that huge page.
   942  
   943  		// Compute the huge page boundary above our candidate.
   944  		pagesPerHugePage := uintptr(physHugePageSize / pageSize)
   945  		hugePageAbove := uint(alignUp(uintptr(start), pagesPerHugePage))
   946  
   947  		// If that boundary is within our current candidate, then we may be breaking
   948  		// a huge page.
   949  		if hugePageAbove <= end {
   950  			// Compute the huge page boundary below our candidate.
   951  			hugePageBelow := uint(alignDown(uintptr(start), pagesPerHugePage))
   952  
   953  			if hugePageBelow >= end-run {
   954  				// We're in danger of breaking apart a huge page since start+size crosses
   955  				// a huge page boundary and rounding down start to the nearest huge
   956  				// page boundary is included in the full run we found. Include the entire
   957  				// huge page in the bound by rounding down to the huge page size.
   958  				size = size + (start - hugePageBelow)
   959  				start = hugePageBelow
   960  			}
   961  		}
   962  	}
   963  	return start, size
   964  }
   965  
   966  // scavengeIndex is a structure for efficiently managing which pageAlloc chunks have
   967  // memory available to scavenge.
   968  type scavengeIndex struct {
   969  	// chunks is a bitmap representing the entire address space. Each bit represents
   970  	// a single chunk, and a 1 value indicates the presence of pages available for
   971  	// scavenging. Updates to the bitmap are serialized by the pageAlloc lock.
   972  	//
   973  	// The underlying storage of chunks is platform dependent and may not even be
   974  	// totally mapped read/write. min and max reflect the extent that is safe to access.
   975  	// min is inclusive, max is exclusive.
   976  	//
   977  	// searchAddr is the maximum address (in the offset address space, so we have a linear
   978  	// view of the address space; see mranges.go:offAddr) containing memory available to
   979  	// scavenge. It is a hint to the find operation to avoid O(n^2) behavior in repeated lookups.
   980  	//
   981  	// searchAddr is always inclusive and should be the base address of the highest runtime
   982  	// page available for scavenging.
   983  	//
   984  	// searchAddr is managed by both find and mark.
   985  	//
   986  	// Normally, find monotonically decreases searchAddr as it finds no more free pages to
   987  	// scavenge. However, mark, when marking a new chunk at an index greater than the current
   988  	// searchAddr, sets searchAddr to the *negative* index into chunks of that page. The trick here
   989  	// is that concurrent calls to find will fail to monotonically decrease searchAddr, and so they
   990  	// won't barge over new memory becoming available to scavenge. Furthermore, this ensures
   991  	// that some future caller of find *must* observe the new high index. That caller
   992  	// (or any other racing with it), then makes searchAddr positive before continuing, bringing
   993  	// us back to our monotonically decreasing steady-state.
   994  	//
   995  	// A pageAlloc lock serializes updates between min, max, and searchAddr, so abs(searchAddr)
   996  	// is always guaranteed to be >= min and < max (converted to heap addresses).
   997  	//
   998  	// TODO(mknyszek): Ideally we would use something bigger than a uint8 for faster
   999  	// iteration like uint32, but we lack the bit twiddling intrinsics. We'd need to either
  1000  	// copy them from math/bits or fix the fact that we can't import math/bits' code from
  1001  	// the runtime due to compiler instrumentation.
  1002  	searchAddr atomicOffAddr
  1003  	chunks     []atomic.Uint8
  1004  	minHeapIdx atomic.Int32
  1005  	min, max   atomic.Int32
  1006  }
  1007  
  1008  // find returns the highest chunk index that may contain pages available to scavenge.
  1009  // It also returns an offset to start searching in the highest chunk.
  1010  func (s *scavengeIndex) find() (chunkIdx, uint) {
  1011  	searchAddr, marked := s.searchAddr.Load()
  1012  	if searchAddr == minOffAddr.addr() {
  1013  		// We got a cleared search addr.
  1014  		return 0, 0
  1015  	}
  1016  
  1017  	// Starting from searchAddr's chunk, and moving down to minHeapIdx,
  1018  	// iterate until we find a chunk with pages to scavenge.
  1019  	min := s.minHeapIdx.Load()
  1020  	searchChunk := chunkIndex(uintptr(searchAddr))
  1021  	start := int32(searchChunk / 8)
  1022  	for i := start; i >= min; i-- {
  1023  		// Skip over irrelevant address space.
  1024  		chunks := s.chunks[i].Load()
  1025  		if chunks == 0 {
  1026  			continue
  1027  		}
  1028  		// Note that we can't have 8 leading zeroes here because
  1029  		// we necessarily skipped that case. So, what's left is
  1030  		// an index. If there are no zeroes, we want the 7th
  1031  		// index, if 1 zero, the 6th, and so on.
  1032  		n := 7 - sys.LeadingZeros8(chunks)
  1033  		ci := chunkIdx(uint(i)*8 + uint(n))
  1034  		if searchChunk == ci {
  1035  			return ci, chunkPageIndex(uintptr(searchAddr))
  1036  		}
  1037  		// Try to reduce searchAddr to newSearchAddr.
  1038  		newSearchAddr := chunkBase(ci) + pallocChunkBytes - pageSize
  1039  		if marked {
  1040  			// Attempt to be the first one to decrease the searchAddr
  1041  			// after an increase. If we fail, that means there was another
  1042  			// increase, or somebody else got to it before us. Either way,
  1043  			// it doesn't matter. We may lose some performance having an
  1044  			// incorrect search address, but it's far more important that
  1045  			// we don't miss updates.
  1046  			s.searchAddr.StoreUnmark(searchAddr, newSearchAddr)
  1047  		} else {
  1048  			// Decrease searchAddr.
  1049  			s.searchAddr.StoreMin(newSearchAddr)
  1050  		}
  1051  		return ci, pallocChunkPages - 1
  1052  	}
  1053  	// Clear searchAddr, because we've exhausted the heap.
  1054  	s.searchAddr.Clear()
  1055  	return 0, 0
  1056  }
  1057  
  1058  // mark sets the inclusive range of chunks between indices start and end as
  1059  // containing pages available to scavenge.
  1060  //
  1061  // Must be serialized with other mark, markRange, and clear calls.
  1062  func (s *scavengeIndex) mark(base, limit uintptr) {
  1063  	start, end := chunkIndex(base), chunkIndex(limit-pageSize)
  1064  	if start == end {
  1065  		// Within a chunk.
  1066  		mask := uint8(1 << (start % 8))
  1067  		s.chunks[start/8].Or(mask)
  1068  	} else if start/8 == end/8 {
  1069  		// Within the same byte in the index.
  1070  		mask := uint8(uint16(1<<(end-start+1))-1) << (start % 8)
  1071  		s.chunks[start/8].Or(mask)
  1072  	} else {
  1073  		// Crosses multiple bytes in the index.
  1074  		startAligned := chunkIdx(alignUp(uintptr(start), 8))
  1075  		endAligned := chunkIdx(alignDown(uintptr(end), 8))
  1076  
  1077  		// Do the end of the first byte first.
  1078  		if width := startAligned - start; width > 0 {
  1079  			mask := uint8(uint16(1<<width)-1) << (start % 8)
  1080  			s.chunks[start/8].Or(mask)
  1081  		}
  1082  		// Do the middle aligned sections that take up a whole
  1083  		// byte.
  1084  		for ci := startAligned; ci < endAligned; ci += 8 {
  1085  			s.chunks[ci/8].Store(^uint8(0))
  1086  		}
  1087  		// Do the end of the last byte.
  1088  		//
  1089  		// This width check doesn't match the one above
  1090  		// for start because aligning down into the endAligned
  1091  		// block means we always have at least one chunk in this
  1092  		// block (note that end is *inclusive*). This also means
  1093  		// that if end == endAligned+n, then what we really want
  1094  		// is to fill n+1 chunks, i.e. width n+1. By induction,
  1095  		// this is true for all n.
  1096  		if width := end - endAligned + 1; width > 0 {
  1097  			mask := uint8(uint16(1<<width) - 1)
  1098  			s.chunks[end/8].Or(mask)
  1099  		}
  1100  	}
  1101  	newSearchAddr := limit - pageSize
  1102  	searchAddr, _ := s.searchAddr.Load()
  1103  	// N.B. Because mark is serialized, it's not necessary to do a
  1104  	// full CAS here. mark only ever increases searchAddr, while
  1105  	// find only ever decreases it. Since we only ever race with
  1106  	// decreases, even if the value we loaded is stale, the actual
  1107  	// value will never be larger.
  1108  	if (offAddr{searchAddr}).lessThan(offAddr{newSearchAddr}) {
  1109  		s.searchAddr.StoreMarked(newSearchAddr)
  1110  	}
  1111  }
  1112  
  1113  // clear sets the chunk at index ci as not containing pages available to scavenge.
  1114  //
  1115  // Must be serialized with other mark, markRange, and clear calls.
  1116  func (s *scavengeIndex) clear(ci chunkIdx) {
  1117  	s.chunks[ci/8].And(^uint8(1 << (ci % 8)))
  1118  }
  1119  
  1120  type piController struct {
  1121  	kp float64 // Proportional constant.
  1122  	ti float64 // Integral time constant.
  1123  	tt float64 // Reset time.
  1124  
  1125  	min, max float64 // Output boundaries.
  1126  
  1127  	// PI controller state.
  1128  
  1129  	errIntegral float64 // Integral of the error from t=0 to now.
  1130  
  1131  	// Error flags.
  1132  	errOverflow   bool // Set if errIntegral ever overflowed.
  1133  	inputOverflow bool // Set if an operation with the input overflowed.
  1134  }
  1135  
  1136  // next provides a new sample to the controller.
  1137  //
  1138  // input is the sample, setpoint is the desired point, and period is how much
  1139  // time (in whatever unit makes the most sense) has passed since the last sample.
  1140  //
  1141  // Returns a new value for the variable it's controlling, and whether the operation
  1142  // completed successfully. One reason this might fail is if error has been growing
  1143  // in an unbounded manner, to the point of overflow.
  1144  //
  1145  // In the specific case of an error overflow occurs, the errOverflow field will be
  1146  // set and the rest of the controller's internal state will be fully reset.
  1147  func (c *piController) next(input, setpoint, period float64) (float64, bool) {
  1148  	// Compute the raw output value.
  1149  	prop := c.kp * (setpoint - input)
  1150  	rawOutput := prop + c.errIntegral
  1151  
  1152  	// Clamp rawOutput into output.
  1153  	output := rawOutput
  1154  	if isInf(output) || isNaN(output) {
  1155  		// The input had a large enough magnitude that either it was already
  1156  		// overflowed, or some operation with it overflowed.
  1157  		// Set a flag and reset. That's the safest thing to do.
  1158  		c.reset()
  1159  		c.inputOverflow = true
  1160  		return c.min, false
  1161  	}
  1162  	if output < c.min {
  1163  		output = c.min
  1164  	} else if output > c.max {
  1165  		output = c.max
  1166  	}
  1167  
  1168  	// Update the controller's state.
  1169  	if c.ti != 0 && c.tt != 0 {
  1170  		c.errIntegral += (c.kp*period/c.ti)*(setpoint-input) + (period/c.tt)*(output-rawOutput)
  1171  		if isInf(c.errIntegral) || isNaN(c.errIntegral) {
  1172  			// So much error has accumulated that we managed to overflow.
  1173  			// The assumptions around the controller have likely broken down.
  1174  			// Set a flag and reset. That's the safest thing to do.
  1175  			c.reset()
  1176  			c.errOverflow = true
  1177  			return c.min, false
  1178  		}
  1179  	}
  1180  	return output, true
  1181  }
  1182  
  1183  // reset resets the controller state, except for controller error flags.
  1184  func (c *piController) reset() {
  1185  	c.errIntegral = 0
  1186  }
  1187  

View as plain text