Source file src/runtime/sigqueue.go

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // This file implements runtime support for signal handling.
     6  //
     7  // Most synchronization primitives are not available from
     8  // the signal handler (it cannot block, allocate memory, or use locks)
     9  // so the handler communicates with a processing goroutine
    10  // via struct sig, below.
    11  //
    12  // sigsend is called by the signal handler to queue a new signal.
    13  // signal_recv is called by the Go program to receive a newly queued signal.
    14  //
    15  // Synchronization between sigsend and signal_recv is based on the sig.state
    16  // variable. It can be in three states:
    17  // * sigReceiving means that signal_recv is blocked on sig.Note and there are
    18  //   no new pending signals.
    19  // * sigSending means that sig.mask *may* contain new pending signals,
    20  //   signal_recv can't be blocked in this state.
    21  // * sigIdle means that there are no new pending signals and signal_recv is not
    22  //   blocked.
    23  //
    24  // Transitions between states are done atomically with CAS.
    25  //
    26  // When signal_recv is unblocked, it resets sig.Note and rechecks sig.mask.
    27  // If several sigsends and signal_recv execute concurrently, it can lead to
    28  // unnecessary rechecks of sig.mask, but it cannot lead to missed signals
    29  // nor deadlocks.
    30  
    31  //go:build !plan9
    32  
    33  package runtime
    34  
    35  import (
    36  	"runtime/internal/atomic"
    37  	_ "unsafe" // for go:linkname
    38  )
    39  
    40  // sig handles communication between the signal handler and os/signal.
    41  // Other than the inuse and recv fields, the fields are accessed atomically.
    42  //
    43  // The wanted and ignored fields are only written by one goroutine at
    44  // a time; access is controlled by the handlers Mutex in os/signal.
    45  // The fields are only read by that one goroutine and by the signal handler.
    46  // We access them atomically to minimize the race between setting them
    47  // in the goroutine calling os/signal and the signal handler,
    48  // which may be running in a different thread. That race is unavoidable,
    49  // as there is no connection between handling a signal and receiving one,
    50  // but atomic instructions should minimize it.
    51  var sig struct {
    52  	note       note
    53  	mask       [(_NSIG + 31) / 32]uint32
    54  	wanted     [(_NSIG + 31) / 32]uint32
    55  	ignored    [(_NSIG + 31) / 32]uint32
    56  	recv       [(_NSIG + 31) / 32]uint32
    57  	state      uint32
    58  	delivering uint32
    59  	inuse      bool
    60  }
    61  
    62  const (
    63  	sigIdle = iota
    64  	sigReceiving
    65  	sigSending
    66  )
    67  
    68  // sigsend delivers a signal from sighandler to the internal signal delivery queue.
    69  // It reports whether the signal was sent. If not, the caller typically crashes the program.
    70  // It runs from the signal handler, so it's limited in what it can do.
    71  func sigsend(s uint32) bool {
    72  	bit := uint32(1) << uint(s&31)
    73  	if s >= uint32(32*len(sig.wanted)) {
    74  		return false
    75  	}
    76  
    77  	atomic.Xadd(&sig.delivering, 1)
    78  	// We are running in the signal handler; defer is not available.
    79  
    80  	if w := atomic.Load(&sig.wanted[s/32]); w&bit == 0 {
    81  		atomic.Xadd(&sig.delivering, -1)
    82  		return false
    83  	}
    84  
    85  	// Add signal to outgoing queue.
    86  	for {
    87  		mask := sig.mask[s/32]
    88  		if mask&bit != 0 {
    89  			atomic.Xadd(&sig.delivering, -1)
    90  			return true // signal already in queue
    91  		}
    92  		if atomic.Cas(&sig.mask[s/32], mask, mask|bit) {
    93  			break
    94  		}
    95  	}
    96  
    97  	// Notify receiver that queue has new bit.
    98  Send:
    99  	for {
   100  		switch atomic.Load(&sig.state) {
   101  		default:
   102  			throw("sigsend: inconsistent state")
   103  		case sigIdle:
   104  			if atomic.Cas(&sig.state, sigIdle, sigSending) {
   105  				break Send
   106  			}
   107  		case sigSending:
   108  			// notification already pending
   109  			break Send
   110  		case sigReceiving:
   111  			if atomic.Cas(&sig.state, sigReceiving, sigIdle) {
   112  				if GOOS == "darwin" || GOOS == "ios" {
   113  					sigNoteWakeup(&sig.note)
   114  					break Send
   115  				}
   116  				notewakeup(&sig.note)
   117  				break Send
   118  			}
   119  		}
   120  	}
   121  
   122  	atomic.Xadd(&sig.delivering, -1)
   123  	return true
   124  }
   125  
   126  // Called to receive the next queued signal.
   127  // Must only be called from a single goroutine at a time.
   128  //
   129  //go:linkname signal_recv os/signal.signal_recv
   130  func signal_recv() uint32 {
   131  	for {
   132  		// Serve any signals from local copy.
   133  		for i := uint32(0); i < _NSIG; i++ {
   134  			if sig.recv[i/32]&(1<<(i&31)) != 0 {
   135  				sig.recv[i/32] &^= 1 << (i & 31)
   136  				return i
   137  			}
   138  		}
   139  
   140  		// Wait for updates to be available from signal sender.
   141  	Receive:
   142  		for {
   143  			switch atomic.Load(&sig.state) {
   144  			default:
   145  				throw("signal_recv: inconsistent state")
   146  			case sigIdle:
   147  				if atomic.Cas(&sig.state, sigIdle, sigReceiving) {
   148  					if GOOS == "darwin" || GOOS == "ios" {
   149  						sigNoteSleep(&sig.note)
   150  						break Receive
   151  					}
   152  					notetsleepg(&sig.note, -1)
   153  					noteclear(&sig.note)
   154  					break Receive
   155  				}
   156  			case sigSending:
   157  				if atomic.Cas(&sig.state, sigSending, sigIdle) {
   158  					break Receive
   159  				}
   160  			}
   161  		}
   162  
   163  		// Incorporate updates from sender into local copy.
   164  		for i := range sig.mask {
   165  			sig.recv[i] = atomic.Xchg(&sig.mask[i], 0)
   166  		}
   167  	}
   168  }
   169  
   170  // signalWaitUntilIdle waits until the signal delivery mechanism is idle.
   171  // This is used to ensure that we do not drop a signal notification due
   172  // to a race between disabling a signal and receiving a signal.
   173  // This assumes that signal delivery has already been disabled for
   174  // the signal(s) in question, and here we are just waiting to make sure
   175  // that all the signals have been delivered to the user channels
   176  // by the os/signal package.
   177  //
   178  //go:linkname signalWaitUntilIdle os/signal.signalWaitUntilIdle
   179  func signalWaitUntilIdle() {
   180  	// Although the signals we care about have been removed from
   181  	// sig.wanted, it is possible that another thread has received
   182  	// a signal, has read from sig.wanted, is now updating sig.mask,
   183  	// and has not yet woken up the processor thread. We need to wait
   184  	// until all current signal deliveries have completed.
   185  	for atomic.Load(&sig.delivering) != 0 {
   186  		Gosched()
   187  	}
   188  
   189  	// Although WaitUntilIdle seems like the right name for this
   190  	// function, the state we are looking for is sigReceiving, not
   191  	// sigIdle.  The sigIdle state is really more like sigProcessing.
   192  	for atomic.Load(&sig.state) != sigReceiving {
   193  		Gosched()
   194  	}
   195  }
   196  
   197  // Must only be called from a single goroutine at a time.
   198  //
   199  //go:linkname signal_enable os/signal.signal_enable
   200  func signal_enable(s uint32) {
   201  	if !sig.inuse {
   202  		// This is the first call to signal_enable. Initialize.
   203  		sig.inuse = true // enable reception of signals; cannot disable
   204  		if GOOS == "darwin" || GOOS == "ios" {
   205  			sigNoteSetup(&sig.note)
   206  		} else {
   207  			noteclear(&sig.note)
   208  		}
   209  	}
   210  
   211  	if s >= uint32(len(sig.wanted)*32) {
   212  		return
   213  	}
   214  
   215  	w := sig.wanted[s/32]
   216  	w |= 1 << (s & 31)
   217  	atomic.Store(&sig.wanted[s/32], w)
   218  
   219  	i := sig.ignored[s/32]
   220  	i &^= 1 << (s & 31)
   221  	atomic.Store(&sig.ignored[s/32], i)
   222  
   223  	sigenable(s)
   224  }
   225  
   226  // Must only be called from a single goroutine at a time.
   227  //
   228  //go:linkname signal_disable os/signal.signal_disable
   229  func signal_disable(s uint32) {
   230  	if s >= uint32(len(sig.wanted)*32) {
   231  		return
   232  	}
   233  	sigdisable(s)
   234  
   235  	w := sig.wanted[s/32]
   236  	w &^= 1 << (s & 31)
   237  	atomic.Store(&sig.wanted[s/32], w)
   238  }
   239  
   240  // Must only be called from a single goroutine at a time.
   241  //
   242  //go:linkname signal_ignore os/signal.signal_ignore
   243  func signal_ignore(s uint32) {
   244  	if s >= uint32(len(sig.wanted)*32) {
   245  		return
   246  	}
   247  	sigignore(s)
   248  
   249  	w := sig.wanted[s/32]
   250  	w &^= 1 << (s & 31)
   251  	atomic.Store(&sig.wanted[s/32], w)
   252  
   253  	i := sig.ignored[s/32]
   254  	i |= 1 << (s & 31)
   255  	atomic.Store(&sig.ignored[s/32], i)
   256  }
   257  
   258  // sigInitIgnored marks the signal as already ignored. This is called at
   259  // program start by initsig. In a shared library initsig is called by
   260  // libpreinit, so the runtime may not be initialized yet.
   261  //
   262  //go:nosplit
   263  func sigInitIgnored(s uint32) {
   264  	i := sig.ignored[s/32]
   265  	i |= 1 << (s & 31)
   266  	atomic.Store(&sig.ignored[s/32], i)
   267  }
   268  
   269  // Checked by signal handlers.
   270  //
   271  //go:linkname signal_ignored os/signal.signal_ignored
   272  func signal_ignored(s uint32) bool {
   273  	i := atomic.Load(&sig.ignored[s/32])
   274  	return i&(1<<(s&31)) != 0
   275  }
   276  

View as plain text