Source file src/runtime/sigqueue.go

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // This file implements runtime support for signal handling.
     6  //
     7  // Most synchronization primitives are not available from
     8  // the signal handler (it cannot block, allocate memory, or use locks)
     9  // so the handler communicates with a processing goroutine
    10  // via struct sig, below.
    11  //
    12  // sigsend is called by the signal handler to queue a new signal.
    13  // signal_recv is called by the Go program to receive a newly queued signal.
    14  // Synchronization between sigsend and signal_recv is based on the sig.state
    15  // variable. It can be in 4 states: sigIdle, sigReceiving, sigSending and sigFixup.
    16  // sigReceiving means that signal_recv is blocked on sig.Note and there are no
    17  // new pending signals.
    18  // sigSending means that sig.mask *may* contain new pending signals,
    19  // signal_recv can't be blocked in this state.
    20  // sigIdle means that there are no new pending signals and signal_recv is not blocked.
    21  // sigFixup is a transient state that can only exist as a short
    22  // transition from sigReceiving and then on to sigIdle: it is
    23  // used to ensure the AllThreadsSyscall()'s mDoFixup() operation
    24  // occurs on the sleeping m, waiting to receive a signal.
    25  // Transitions between states are done atomically with CAS.
    26  // When signal_recv is unblocked, it resets sig.Note and rechecks sig.mask.
    27  // If several sigsends and signal_recv execute concurrently, it can lead to
    28  // unnecessary rechecks of sig.mask, but it cannot lead to missed signals
    29  // nor deadlocks.
    30  
    31  //go:build !plan9
    32  // +build !plan9
    33  
    34  package runtime
    35  
    36  import (
    37  	"runtime/internal/atomic"
    38  	_ "unsafe" // for go:linkname
    39  )
    40  
    41  // sig handles communication between the signal handler and os/signal.
    42  // Other than the inuse and recv fields, the fields are accessed atomically.
    43  //
    44  // The wanted and ignored fields are only written by one goroutine at
    45  // a time; access is controlled by the handlers Mutex in os/signal.
    46  // The fields are only read by that one goroutine and by the signal handler.
    47  // We access them atomically to minimize the race between setting them
    48  // in the goroutine calling os/signal and the signal handler,
    49  // which may be running in a different thread. That race is unavoidable,
    50  // as there is no connection between handling a signal and receiving one,
    51  // but atomic instructions should minimize it.
    52  var sig struct {
    53  	note       note
    54  	mask       [(_NSIG + 31) / 32]uint32
    55  	wanted     [(_NSIG + 31) / 32]uint32
    56  	ignored    [(_NSIG + 31) / 32]uint32
    57  	recv       [(_NSIG + 31) / 32]uint32
    58  	state      uint32
    59  	delivering uint32
    60  	inuse      bool
    61  }
    62  
    63  const (
    64  	sigIdle = iota
    65  	sigReceiving
    66  	sigSending
    67  	sigFixup
    68  )
    69  
    70  // sigsend delivers a signal from sighandler to the internal signal delivery queue.
    71  // It reports whether the signal was sent. If not, the caller typically crashes the program.
    72  // It runs from the signal handler, so it's limited in what it can do.
    73  func sigsend(s uint32) bool {
    74  	bit := uint32(1) << uint(s&31)
    75  	if s >= uint32(32*len(sig.wanted)) {
    76  		return false
    77  	}
    78  
    79  	atomic.Xadd(&sig.delivering, 1)
    80  	// We are running in the signal handler; defer is not available.
    81  
    82  	if w := atomic.Load(&sig.wanted[s/32]); w&bit == 0 {
    83  		atomic.Xadd(&sig.delivering, -1)
    84  		return false
    85  	}
    86  
    87  	// Add signal to outgoing queue.
    88  	for {
    89  		mask := sig.mask[s/32]
    90  		if mask&bit != 0 {
    91  			atomic.Xadd(&sig.delivering, -1)
    92  			return true // signal already in queue
    93  		}
    94  		if atomic.Cas(&sig.mask[s/32], mask, mask|bit) {
    95  			break
    96  		}
    97  	}
    98  
    99  	// Notify receiver that queue has new bit.
   100  Send:
   101  	for {
   102  		switch atomic.Load(&sig.state) {
   103  		default:
   104  			throw("sigsend: inconsistent state")
   105  		case sigIdle:
   106  			if atomic.Cas(&sig.state, sigIdle, sigSending) {
   107  				break Send
   108  			}
   109  		case sigSending:
   110  			// notification already pending
   111  			break Send
   112  		case sigReceiving:
   113  			if atomic.Cas(&sig.state, sigReceiving, sigIdle) {
   114  				if GOOS == "darwin" || GOOS == "ios" {
   115  					sigNoteWakeup(&sig.note)
   116  					break Send
   117  				}
   118  				notewakeup(&sig.note)
   119  				break Send
   120  			}
   121  		case sigFixup:
   122  			// nothing to do - we need to wait for sigIdle.
   123  			mDoFixupAndOSYield()
   124  		}
   125  	}
   126  
   127  	atomic.Xadd(&sig.delivering, -1)
   128  	return true
   129  }
   130  
   131  // sigRecvPrepareForFixup is used to temporarily wake up the
   132  // signal_recv() running thread while it is blocked waiting for the
   133  // arrival of a signal. If it causes the thread to wake up, the
   134  // sig.state travels through this sequence: sigReceiving -> sigFixup
   135  // -> sigIdle -> sigReceiving and resumes. (This is only called while
   136  // GC is disabled.)
   137  //go:nosplit
   138  func sigRecvPrepareForFixup() {
   139  	if atomic.Cas(&sig.state, sigReceiving, sigFixup) {
   140  		notewakeup(&sig.note)
   141  	}
   142  }
   143  
   144  // Called to receive the next queued signal.
   145  // Must only be called from a single goroutine at a time.
   146  //go:linkname signal_recv os/signal.signal_recv
   147  func signal_recv() uint32 {
   148  	for {
   149  		// Serve any signals from local copy.
   150  		for i := uint32(0); i < _NSIG; i++ {
   151  			if sig.recv[i/32]&(1<<(i&31)) != 0 {
   152  				sig.recv[i/32] &^= 1 << (i & 31)
   153  				return i
   154  			}
   155  		}
   156  
   157  		// Wait for updates to be available from signal sender.
   158  	Receive:
   159  		for {
   160  			switch atomic.Load(&sig.state) {
   161  			default:
   162  				throw("signal_recv: inconsistent state")
   163  			case sigIdle:
   164  				if atomic.Cas(&sig.state, sigIdle, sigReceiving) {
   165  					if GOOS == "darwin" || GOOS == "ios" {
   166  						sigNoteSleep(&sig.note)
   167  						break Receive
   168  					}
   169  					notetsleepg(&sig.note, -1)
   170  					noteclear(&sig.note)
   171  					if !atomic.Cas(&sig.state, sigFixup, sigIdle) {
   172  						break Receive
   173  					}
   174  					// Getting here, the code will
   175  					// loop around again to sleep
   176  					// in state sigReceiving. This
   177  					// path is taken when
   178  					// sigRecvPrepareForFixup()
   179  					// has been called by another
   180  					// thread.
   181  				}
   182  			case sigSending:
   183  				if atomic.Cas(&sig.state, sigSending, sigIdle) {
   184  					break Receive
   185  				}
   186  			}
   187  		}
   188  
   189  		// Incorporate updates from sender into local copy.
   190  		for i := range sig.mask {
   191  			sig.recv[i] = atomic.Xchg(&sig.mask[i], 0)
   192  		}
   193  	}
   194  }
   195  
   196  // signalWaitUntilIdle waits until the signal delivery mechanism is idle.
   197  // This is used to ensure that we do not drop a signal notification due
   198  // to a race between disabling a signal and receiving a signal.
   199  // This assumes that signal delivery has already been disabled for
   200  // the signal(s) in question, and here we are just waiting to make sure
   201  // that all the signals have been delivered to the user channels
   202  // by the os/signal package.
   203  //go:linkname signalWaitUntilIdle os/signal.signalWaitUntilIdle
   204  func signalWaitUntilIdle() {
   205  	// Although the signals we care about have been removed from
   206  	// sig.wanted, it is possible that another thread has received
   207  	// a signal, has read from sig.wanted, is now updating sig.mask,
   208  	// and has not yet woken up the processor thread. We need to wait
   209  	// until all current signal deliveries have completed.
   210  	for atomic.Load(&sig.delivering) != 0 {
   211  		Gosched()
   212  	}
   213  
   214  	// Although WaitUntilIdle seems like the right name for this
   215  	// function, the state we are looking for is sigReceiving, not
   216  	// sigIdle.  The sigIdle state is really more like sigProcessing.
   217  	for atomic.Load(&sig.state) != sigReceiving {
   218  		Gosched()
   219  	}
   220  }
   221  
   222  // Must only be called from a single goroutine at a time.
   223  //go:linkname signal_enable os/signal.signal_enable
   224  func signal_enable(s uint32) {
   225  	if !sig.inuse {
   226  		// This is the first call to signal_enable. Initialize.
   227  		sig.inuse = true // enable reception of signals; cannot disable
   228  		if GOOS == "darwin" || GOOS == "ios" {
   229  			sigNoteSetup(&sig.note)
   230  		} else {
   231  			noteclear(&sig.note)
   232  		}
   233  	}
   234  
   235  	if s >= uint32(len(sig.wanted)*32) {
   236  		return
   237  	}
   238  
   239  	w := sig.wanted[s/32]
   240  	w |= 1 << (s & 31)
   241  	atomic.Store(&sig.wanted[s/32], w)
   242  
   243  	i := sig.ignored[s/32]
   244  	i &^= 1 << (s & 31)
   245  	atomic.Store(&sig.ignored[s/32], i)
   246  
   247  	sigenable(s)
   248  }
   249  
   250  // Must only be called from a single goroutine at a time.
   251  //go:linkname signal_disable os/signal.signal_disable
   252  func signal_disable(s uint32) {
   253  	if s >= uint32(len(sig.wanted)*32) {
   254  		return
   255  	}
   256  	sigdisable(s)
   257  
   258  	w := sig.wanted[s/32]
   259  	w &^= 1 << (s & 31)
   260  	atomic.Store(&sig.wanted[s/32], w)
   261  }
   262  
   263  // Must only be called from a single goroutine at a time.
   264  //go:linkname signal_ignore os/signal.signal_ignore
   265  func signal_ignore(s uint32) {
   266  	if s >= uint32(len(sig.wanted)*32) {
   267  		return
   268  	}
   269  	sigignore(s)
   270  
   271  	w := sig.wanted[s/32]
   272  	w &^= 1 << (s & 31)
   273  	atomic.Store(&sig.wanted[s/32], w)
   274  
   275  	i := sig.ignored[s/32]
   276  	i |= 1 << (s & 31)
   277  	atomic.Store(&sig.ignored[s/32], i)
   278  }
   279  
   280  // sigInitIgnored marks the signal as already ignored. This is called at
   281  // program start by initsig. In a shared library initsig is called by
   282  // libpreinit, so the runtime may not be initialized yet.
   283  //go:nosplit
   284  func sigInitIgnored(s uint32) {
   285  	i := sig.ignored[s/32]
   286  	i |= 1 << (s & 31)
   287  	atomic.Store(&sig.ignored[s/32], i)
   288  }
   289  
   290  // Checked by signal handlers.
   291  //go:linkname signal_ignored os/signal.signal_ignored
   292  func signal_ignored(s uint32) bool {
   293  	i := atomic.Load(&sig.ignored[s/32])
   294  	return i&(1<<(s&31)) != 0
   295  }
   296  

View as plain text