Source file test/codegen/math.go
1 // asmcheck 2 3 // Copyright 2018 The Go Authors. All rights reserved. 4 // Use of this source code is governed by a BSD-style 5 // license that can be found in the LICENSE file. 6 7 package codegen 8 9 import "math" 10 11 var sink64 [8]float64 12 13 func approx(x float64) { 14 // amd64/v2:-".*x86HasSSE41" amd64/v3:-".*x86HasSSE41" 15 // amd64:"ROUNDSD\t[$]2" 16 // s390x:"FIDBR\t[$]6" 17 // arm64:"FRINTPD" 18 // ppc64:"FRIP" 19 // ppc64le:"FRIP" 20 // wasm:"F64Ceil" 21 sink64[0] = math.Ceil(x) 22 23 // amd64/v2:-".*x86HasSSE41" amd64/v3:-".*x86HasSSE41" 24 // amd64:"ROUNDSD\t[$]1" 25 // s390x:"FIDBR\t[$]7" 26 // arm64:"FRINTMD" 27 // ppc64:"FRIM" 28 // ppc64le:"FRIM" 29 // wasm:"F64Floor" 30 sink64[1] = math.Floor(x) 31 32 // s390x:"FIDBR\t[$]1" 33 // arm64:"FRINTAD" 34 // ppc64:"FRIN" 35 // ppc64le:"FRIN" 36 sink64[2] = math.Round(x) 37 38 // amd64/v2:-".*x86HasSSE41" amd64/v3:-".*x86HasSSE41" 39 // amd64:"ROUNDSD\t[$]3" 40 // s390x:"FIDBR\t[$]5" 41 // arm64:"FRINTZD" 42 // ppc64:"FRIZ" 43 // ppc64le:"FRIZ" 44 // wasm:"F64Trunc" 45 sink64[3] = math.Trunc(x) 46 47 // amd64/v2:-".*x86HasSSE41" amd64/v3:-".*x86HasSSE41" 48 // amd64:"ROUNDSD\t[$]0" 49 // s390x:"FIDBR\t[$]4" 50 // arm64:"FRINTND" 51 // wasm:"F64Nearest" 52 sink64[4] = math.RoundToEven(x) 53 } 54 55 func sqrt(x float64) float64 { 56 // amd64:"SQRTSD" 57 // 386/sse2:"SQRTSD" 386/softfloat:-"SQRTD" 58 // arm64:"FSQRTD" 59 // arm/7:"SQRTD" 60 // mips/hardfloat:"SQRTD" mips/softfloat:-"SQRTD" 61 // mips64/hardfloat:"SQRTD" mips64/softfloat:-"SQRTD" 62 // wasm:"F64Sqrt" 63 // ppc64le:"FSQRT" 64 // ppc64:"FSQRT" 65 return math.Sqrt(x) 66 } 67 68 func sqrt32(x float32) float32 { 69 // amd64:"SQRTSS" 70 // 386/sse2:"SQRTSS" 386/softfloat:-"SQRTS" 71 // arm64:"FSQRTS" 72 // arm/7:"SQRTF" 73 // mips/hardfloat:"SQRTF" mips/softfloat:-"SQRTF" 74 // mips64/hardfloat:"SQRTF" mips64/softfloat:-"SQRTF" 75 // wasm:"F32Sqrt" 76 // ppc64le:"FSQRTS" 77 // ppc64:"FSQRTS" 78 return float32(math.Sqrt(float64(x))) 79 } 80 81 // Check that it's using integer registers 82 func abs(x, y float64) { 83 // amd64:"BTRQ\t[$]63" 84 // arm64:"FABSD\t" 85 // s390x:"LPDFR\t",-"MOVD\t" (no integer load/store) 86 // ppc64:"FABS\t" 87 // ppc64le:"FABS\t" 88 // riscv64:"FABSD\t" 89 // wasm:"F64Abs" 90 // arm/6:"ABSD\t" 91 sink64[0] = math.Abs(x) 92 93 // amd64:"BTRQ\t[$]63","PXOR" (TODO: this should be BTSQ) 94 // s390x:"LNDFR\t",-"MOVD\t" (no integer load/store) 95 // ppc64:"FNABS\t" 96 // ppc64le:"FNABS\t" 97 sink64[1] = -math.Abs(y) 98 } 99 100 // Check that it's using integer registers 101 func abs32(x float32) float32 { 102 // s390x:"LPDFR",-"LDEBR",-"LEDBR" (no float64 conversion) 103 return float32(math.Abs(float64(x))) 104 } 105 106 // Check that it's using integer registers 107 func copysign(a, b, c float64) { 108 // amd64:"BTRQ\t[$]63","ANDQ","ORQ" 109 // s390x:"CPSDR",-"MOVD" (no integer load/store) 110 // ppc64:"FCPSGN" 111 // ppc64le:"FCPSGN" 112 // riscv64:"FSGNJD" 113 // wasm:"F64Copysign" 114 sink64[0] = math.Copysign(a, b) 115 116 // amd64:"BTSQ\t[$]63" 117 // s390x:"LNDFR\t",-"MOVD\t" (no integer load/store) 118 // ppc64:"FCPSGN" 119 // ppc64le:"FCPSGN" 120 // riscv64:"FSGNJD" 121 // arm64:"ORR", -"AND" 122 sink64[1] = math.Copysign(c, -1) 123 124 // Like math.Copysign(c, -1), but with integer operations. Useful 125 // for platforms that have a copysign opcode to see if it's detected. 126 // s390x:"LNDFR\t",-"MOVD\t" (no integer load/store) 127 sink64[2] = math.Float64frombits(math.Float64bits(a) | 1<<63) 128 129 // amd64:"ANDQ","ORQ" 130 // s390x:"CPSDR\t",-"MOVD\t" (no integer load/store) 131 // ppc64:"FCPSGN" 132 // ppc64le:"FCPSGN" 133 // riscv64:"FSGNJD" 134 sink64[3] = math.Copysign(-1, c) 135 } 136 137 func fma(x, y, z float64) float64 { 138 // amd64/v3:-".*x86HasFMA" 139 // amd64:"VFMADD231SD" 140 // arm/6:"FMULAD" 141 // arm64:"FMADDD" 142 // s390x:"FMADD" 143 // ppc64:"FMADD" 144 // ppc64le:"FMADD" 145 // riscv64:"FMADDD" 146 return math.FMA(x, y, z) 147 } 148 149 func fms(x, y, z float64) float64 { 150 // riscv64:"FMSUBD" 151 return math.FMA(x, y, -z) 152 } 153 154 func fnma(x, y, z float64) float64 { 155 // riscv64:"FNMADDD" 156 return math.FMA(-x, y, z) 157 } 158 159 func fnms(x, y, z float64) float64 { 160 // riscv64:"FNMSUBD" 161 return math.FMA(x, -y, -z) 162 } 163 164 func fromFloat64(f64 float64) uint64 { 165 // amd64:"MOVQ\tX.*, [^X].*" 166 // arm64:"FMOVD\tF.*, R.*" 167 // ppc64:"MFVSRD" 168 // ppc64le:"MFVSRD" 169 return math.Float64bits(f64+1) + 1 170 } 171 172 func fromFloat32(f32 float32) uint32 { 173 // amd64:"MOVL\tX.*, [^X].*" 174 // arm64:"FMOVS\tF.*, R.*" 175 return math.Float32bits(f32+1) + 1 176 } 177 178 func toFloat64(u64 uint64) float64 { 179 // amd64:"MOVQ\t[^X].*, X.*" 180 // arm64:"FMOVD\tR.*, F.*" 181 // ppc64:"MTVSRD" 182 // ppc64le:"MTVSRD" 183 return math.Float64frombits(u64+1) + 1 184 } 185 186 func toFloat32(u32 uint32) float32 { 187 // amd64:"MOVL\t[^X].*, X.*" 188 // arm64:"FMOVS\tR.*, F.*" 189 return math.Float32frombits(u32+1) + 1 190 } 191 192 // Test that comparisons with constants converted to float 193 // are evaluated at compile-time 194 195 func constantCheck64() bool { 196 // amd64:"(MOVB\t[$]0)|(XORL\t[A-Z][A-Z0-9]+, [A-Z][A-Z0-9]+)",-"FCMP",-"MOVB\t[$]1" 197 // s390x:"MOV(B|BZ|D)\t[$]0,",-"FCMPU",-"MOV(B|BZ|D)\t[$]1," 198 return 0.5 == float64(uint32(1)) || 1.5 > float64(uint64(1<<63)) 199 } 200 201 func constantCheck32() bool { 202 // amd64:"MOV(B|L)\t[$]1",-"FCMP",-"MOV(B|L)\t[$]0" 203 // s390x:"MOV(B|BZ|D)\t[$]1,",-"FCMPU",-"MOV(B|BZ|D)\t[$]0," 204 return float32(0.5) <= float32(int64(1)) && float32(1.5) >= float32(int32(-1<<31)) 205 } 206 207 // Test that integer constants are converted to floating point constants 208 // at compile-time 209 210 func constantConvert32(x float32) float32 { 211 // amd64:"MOVSS\t[$]f32.3f800000\\(SB\\)" 212 // s390x:"FMOVS\t[$]f32.3f800000\\(SB\\)" 213 // ppc64:"FMOVS\t[$]f32.3f800000\\(SB\\)" 214 // ppc64le:"FMOVS\t[$]f32.3f800000\\(SB\\)" 215 // arm64:"FMOVS\t[$]\\(1.0\\)" 216 if x > math.Float32frombits(0x3f800000) { 217 return -x 218 } 219 return x 220 } 221 222 func constantConvertInt32(x uint32) uint32 { 223 // amd64:-"MOVSS" 224 // s390x:-"FMOVS" 225 // ppc64:-"FMOVS" 226 // ppc64le:-"FMOVS" 227 // arm64:-"FMOVS" 228 if x > math.Float32bits(1) { 229 return -x 230 } 231 return x 232 } 233 234 func nanGenerate64() float64 { 235 // Test to make sure we don't generate a NaN while constant propagating. 236 // See issue 36400. 237 zero := 0.0 238 // amd64:-"DIVSD" 239 inf := 1 / zero // +inf. We can constant propagate this one. 240 negone := -1.0 241 242 // amd64:"DIVSD" 243 z0 := zero / zero 244 // amd64:"MULSD" 245 z1 := zero * inf 246 // amd64:"SQRTSD" 247 z2 := math.Sqrt(negone) 248 return z0 + z1 + z2 249 } 250 251 func nanGenerate32() float32 { 252 zero := float32(0.0) 253 // amd64:-"DIVSS" 254 inf := 1 / zero // +inf. We can constant propagate this one. 255 256 // amd64:"DIVSS" 257 z0 := zero / zero 258 // amd64:"MULSS" 259 z1 := zero * inf 260 return z0 + z1 261 } 262