Text file src/internal/bytealg/count_s390x.s

     1  // Copyright 2019 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  #include "go_asm.h"
     6  #include "textflag.h"
     7  
     8  // condition code masks
     9  #define EQ 8
    10  #define NE 7
    11  
    12  // register assignments
    13  #define R_ZERO R0
    14  #define R_VAL  R1
    15  #define R_TMP  R2
    16  #define R_PTR  R3
    17  #define R_LEN  R4
    18  #define R_CHAR R5
    19  #define R_RET  R6
    20  #define R_ITER R7
    21  #define R_CNT  R8
    22  #define R_MPTR R9
    23  
    24  // vector register assignments
    25  #define V_ZERO V0
    26  #define V_CHAR V1
    27  #define V_MASK V2
    28  #define V_VAL  V3
    29  #define V_CNT  V4
    30  
    31  // mask for trailing bytes in vector implementation
    32  GLOBL countbytemask<>(SB), RODATA, $16
    33  DATA countbytemask<>+0(SB)/8, $0x0101010101010101
    34  DATA countbytemask<>+8(SB)/8, $0x0101010101010101
    35  
    36  // func Count(b []byte, c byte) int
    37  TEXT ·Count(SB), NOSPLIT|NOFRAME, $0-40
    38  	LMG   b+0(FP), R_PTR, R_LEN
    39  	MOVBZ c+24(FP), R_CHAR
    40  	MOVD  $ret+32(FP), R_RET
    41  	BR    countbytebody<>(SB)
    42  
    43  // func CountString(s string, c byte) int
    44  TEXT ·CountString(SB), NOSPLIT|NOFRAME, $0-32
    45  	LMG   s+0(FP), R_PTR, R_LEN
    46  	MOVBZ c+16(FP), R_CHAR
    47  	MOVD  $ret+24(FP), R_RET
    48  	BR    countbytebody<>(SB)
    49  
    50  // input:
    51  // R_PTR  = address of array of bytes
    52  // R_LEN  = number of bytes in array
    53  // R_CHAR = byte value to count zero (extended to register width)
    54  // R_RET  = address of return value
    55  TEXT countbytebody<>(SB), NOSPLIT|NOFRAME, $0-0
    56  	MOVD  $internal∕cpu·S390X+const_offsetS390xHasVX(SB), R_TMP
    57  	MOVD  $countbytemask<>(SB), R_MPTR
    58  	CGIJ  $EQ, R_LEN, $0, ret0 // return if length is 0.
    59  	SRD   $4, R_LEN, R_ITER    // R_ITER is the number of 16-byte chunks
    60  	MOVBZ (R_TMP), R_TMP       // load bool indicating support for vector facility
    61  	CGIJ  $EQ, R_TMP, $0, novx // jump to scalar code if the vector facility is not available
    62  
    63  	// Start of vector code (have vector facility).
    64  	//
    65  	// Set R_LEN to be the length mod 16 minus 1 to use as an index for
    66  	// vector 'load with length' (VLL). It will be in the range [-1,14].
    67  	// Also replicate c across a 16-byte vector and initialize V_ZERO.
    68  	ANDW  $0xf, R_LEN
    69  	VLVGB $0, R_CHAR, V_CHAR // V_CHAR = [16]byte{c, 0, ..., 0, 0}
    70  	VZERO V_ZERO             // V_ZERO = [1]uint128{0}
    71  	ADDW  $-1, R_LEN
    72  	VREPB $0, V_CHAR, V_CHAR // V_CHAR = [16]byte{c, c, ..., c, c}
    73  
    74  	// Jump to loop if we have more than 15 bytes to process.
    75  	CGIJ $NE, R_ITER, $0, vxchunks
    76  
    77  	// Load 1-15 bytes and corresponding mask.
    78  	// Note: only the low 32-bits of R_LEN are used for the index.
    79  	VLL R_LEN, (R_PTR), V_VAL
    80  	VLL R_LEN, (R_MPTR), V_MASK
    81  
    82  	// Compare each byte in input chunk against byte to be counted.
    83  	// Each byte element will be set to either 0 (no match) or 1 (match).
    84  	VCEQB V_CHAR, V_VAL, V_VAL // each byte will be either 0xff or 0x00
    85  	VN    V_MASK, V_VAL, V_VAL // mask out most significant 7 bits
    86  
    87  	// Accumulate matched byte count in 128-bit integer value.
    88  	VSUMB  V_VAL, V_ZERO, V_VAL // [16]byte{x0, x1, ..., x14, x15} → [4]uint32{x0+x1+x2+x3, ..., x12+x13+x14+x15}
    89  	VSUMQF V_VAL, V_ZERO, V_CNT // [4]uint32{x0, x1, x2, x3} → [1]uint128{x0+x1+x2+x3}
    90  
    91  	// Return rightmost (lowest) 64-bit part of accumulator.
    92  	VSTEG $1, V_CNT, (R_RET)
    93  	RET
    94  
    95  vxchunks:
    96  	// Load 0x01 into every byte element in the 16-byte mask vector.
    97  	VREPIB $1, V_MASK // V_MASK = [16]byte{1, 1, ..., 1, 1}
    98  	VZERO  V_CNT      // initial uint128 count of 0
    99  
   100  vxloop:
   101  	// Load input bytes in 16-byte chunks.
   102  	VL (R_PTR), V_VAL
   103  
   104  	// Compare each byte in input chunk against byte to be counted.
   105  	// Each byte element will be set to either 0 (no match) or 1 (match).
   106  	VCEQB V_CHAR, V_VAL, V_VAL // each byte will be either 0xff or 0x00
   107  	VN    V_MASK, V_VAL, V_VAL // mask out most significant 7 bits
   108  
   109  	// Increment input string address.
   110  	MOVD $16(R_PTR), R_PTR
   111  
   112  	// Accumulate matched byte count in 128-bit integer value.
   113  	VSUMB  V_VAL, V_ZERO, V_VAL // [16]byte{x0, x1, ..., x14, x15} → [4]uint32{x0+x1+x2+x3, ..., x12+x13+x14+x15}
   114  	VSUMQF V_VAL, V_ZERO, V_VAL // [4]uint32{x0, x1, x2, x3} → [1]uint128{x0+x1+x2+x3}
   115  	VAQ    V_VAL, V_CNT, V_CNT  // accumulate
   116  
   117  	// Repeat until all 16-byte chunks are done.
   118  	BRCTG R_ITER, vxloop
   119  
   120  	// Skip to end if there are no trailing bytes.
   121  	CIJ $EQ, R_LEN, $-1, vxret
   122  
   123  	// Load 1-15 bytes and corresponding mask.
   124  	// Note: only the low 32-bits of R_LEN are used for the index.
   125  	VLL R_LEN, (R_PTR), V_VAL
   126  	VLL R_LEN, (R_MPTR), V_MASK
   127  
   128  	// Compare each byte in input chunk against byte to be counted.
   129  	// Each byte element will be set to either 0 (no match) or 1 (match).
   130  	VCEQB V_CHAR, V_VAL, V_VAL
   131  	VN    V_MASK, V_VAL, V_VAL
   132  
   133  	// Accumulate matched byte count in 128-bit integer value.
   134  	VSUMB  V_VAL, V_ZERO, V_VAL // [16]byte{x0, x1, ..., x14, x15} → [4]uint32{x0+x1+x2+x3, ..., x12+x13+x14+x15}
   135  	VSUMQF V_VAL, V_ZERO, V_VAL // [4]uint32{x0, x1, x2, x3} → [1]uint128{x0+x1+x2+x3}
   136  	VAQ    V_VAL, V_CNT, V_CNT  // accumulate
   137  
   138  vxret:
   139  	// Return rightmost (lowest) 64-bit part of accumulator.
   140  	VSTEG $1, V_CNT, (R_RET)
   141  	RET
   142  
   143  novx:
   144  	// Start of non-vector code (the vector facility not available).
   145  	//
   146  	// Initialise counter and constant zero.
   147  	MOVD $0, R_CNT
   148  	MOVD $0, R_ZERO
   149  
   150  loop:
   151  	// Read 1-byte from input and compare.
   152  	// Note: avoid putting LOCGR in critical path.
   153  	MOVBZ (R_PTR), R_VAL
   154  	MOVD  $1, R_TMP
   155  	MOVD  $1(R_PTR), R_PTR
   156  	CMPW  R_VAL, R_CHAR
   157  	LOCGR $NE, R_ZERO, R_TMP // select 0 if no match (1 if there is a match)
   158  	ADD   R_TMP, R_CNT       // accumulate 64-bit result
   159  
   160  	// Repeat until all bytes have been checked.
   161  	BRCTG R_LEN, loop
   162  
   163  ret:
   164  	MOVD R_CNT, (R_RET)
   165  	RET
   166  
   167  ret0:
   168  	MOVD $0, (R_RET)
   169  	RET
   170  

View as plain text